Svar:
Forklaring:
Hvad er hastigheden på et objekt, der rejser fra (1, -2, 3) til (-5, 6, 7) over 4 s?
2.693m // s Afstanden mellem de 2 givne tredimensionale punkter kan findes fra den normale euklidiske metriske værdi i RR ^ 3 som følger: x = d ((1,2,3); (- 5,6,7 )) = sqrt ((1 - (- 5)) ^ 2 + (- 2-6) ^ 2 + (3-7) ^ 2) = sqrt (36 + 64 + 16 = sqrt116m, (Forudsat at SI enhederne er Anvendes) Derfor vil objektets hastighed pr. definition være hastigheden for ændring i afstand og givet af v = x / t = sqrt116 / 4 = 2.693m // s.
Hvad er hastigheden på et objekt, der rejser fra (-1, 7,2) til (-3, -1,0) over 2 s?
4.24 "enheder / s" Afstanden mellem de 2 punkter er angivet ved: d = sqrt ((- 1 + 3) ^ 2 + (7 + 1) ^ 2 + (2-0) ^ 2: .d = sqrt 2 ^ 2 + 8 ^ 2 + 2 ^ 2) d = sqrt (72) = 8,48 "enheder": .v = d / t = 8,48 / 2 = 4,24 "enheder / s"
Hvad er hastigheden af et objekt, der rejser fra (-1, 7,2) til (-3, 4,7) over 2 s?
V = sqrt 10 "afstanden mellem to punkter er angivet som:" x = sqrt (Delta x ^ 2 + Delta y ^ 2 + Delta z ^ 2 Delta x = x_2-x_1 = -3 + 1 = -2 Delta y = y_2 -y_1 = 4-7 = -3 Delta z = z_2-z_1 = -3-2 = -5 x = sqrt ((- 2) ^ 2 + (-3) ^ 2 + (- 5) ^ 2) x = sqrt (4 + 9 + 25) x = sqrt40 v = x / tv = sqrt 40/2 v = sqrt (4 * 10) / 2 = 2 * sqrt 10/2 v = sqrt 10