Svar:
Forklaring:
Vi starter med
Det første, vi vil gøre, er at kombinere som vilkår, men der er ikke nogen … endnu. Vi skal udvide
Vi tilslutter det til hvor
NU vi kan kombinere lignende udtryk.
Sæt det hele sammen, og vi har
Vi omskriver derefter ligningen som
Men vent!
Vi kan ikke bare holde et tilfældigt tal i ligningen! Hvad vi gør på den ene side, må vi gøre til den anden. Nu ved jeg ikke om dig, men jeg vil ikke rigtig ændre mig
Men du ved, vi kunne bare trække en
Nu lyder ligningen:
Sætte det hele sammen, har vi
Dette er faktisk i vertex form. Alt vi skal gøre for at finde vertex er at tage
BEMÆRK det
Jen ved, at (-1,41) og (5, 41) ligger på en parabola defineret af ligningen # y = 4x ^ 2-16x + 21. Hvad er koordinaterne til vertexet?
Koordinater for vertex er (2,5) Da ligningen er af formen af y = ax ^ 2 + bx + c, hvor a er positiv, så har parabolen et minimum og er åben opad og symmetrisk akse er parallel med y-aksen . Som punkter (-1,41) og (5,41) ligger begge på parabolen og deres ordinat er ens, disse er afspejling af hinanden w.r.t. symmetrisk akse. Og dermed er symmetrisk akse x = (5-1) / 2 = 2 og svingpunktet af vertex er 2. og ordinat er givet ved 4 * 2 ^ 2-16 * 2 + 21 = 16-32 + 21 = 5. Derfor er koordinaterne for vertex (2,5) og parabolen ligne grafen {y = 4x ^ 2-16x + 21 [-10, 10, -10, 68,76]}
Hvad er koordinaterne til vertexet af y = x ^ 2-2x-7?
Vertex: (1, -8) Konvertere y = x ^ 2-2x-7 i vertexform: y = m (xa) ^ 2 + b (med vertex ved (a, b)) Udfyld firkanten y = x ^ 2 -2xfarve (rød) (+ 1) - 7 farve (rød) (- 1) y = (x-1) ^ 2 + (- 8) med vertexet ved (1, 8-)
Hvad er vertexet for y = 3x ^ 2-7x + 12? Hvad er dens x-aflytninger?
Find vertex af y = 3x ^ 2 - 7x + 12. x-koordinat af vertex: x = (-b / (2a)) = 7/6 y-koordinat af vertex: y = y (7/6) = 3 49/36) - 7 (7/6) = 12 = 147/36 - 49/6 + 12 = = - 147/36 + 432/36 = 285/36 = 7,92 Vertex (7/6, 7,92) For at finde 2 x-aflytter, løser den kvadratiske ligning: y = 3x ^ 2 - 7x + 12 = 0. D = b ^ 2 - 4ac = 49 - 144 <0. Der er ingen x-aflytninger. Parabolen åbner opad og er helt over x-aksen. graf {3x ^ 2 - 7x + 12 [-40, 40, -20, 20]}