Svar:
Forklaring:
Dette problem kræver, at vi forstår, hvordan en funktion kan forskydes og strækkes for at opfylde bestemte parametre. I så fald er vores grundlæggende funktion
I den mest grundlæggende situation:
Men ved at ændre disse konstanter kan vi styre formen og placeringen af vores parabola. Vi starter med toppunktet. Da vi ved, skal det være på
Naturligvis
Når vi tilføjer
Så vores parabola hidtil er:
Men vi skal strække det for at passere gennem punktet
Det betyder, at vores parabol vil have denne ligning:
Hvad er ligningen af parabolen, der har et vertex ved (0, 0) og går gennem punkt (-1, -64)?
F (x) = - 64x ^ 2 Hvis vertexet er ved (0 | 0), f (x) = ax ^ 2 Nu skal vi bare sub i punktet (-1, -64) -64 = a * 1) ^ 2 = aa = -64f (x) = - 64x ^ 2
Hvad er ligningen af parabolen, der har et vertex ved (10, 8) og går gennem punkt (5,58)?
Find ligningen af en parabola. Ans: y = 2x ^ 2 - 40x + 208 Generel ligning af parabolen: y = ax ^ 2 + bx + c. Der er 3 ukendte: a, b og c. Vi har brug for 3 ligninger for at finde dem. x-koordinat af vertex (10, 8): x = - (b / (2a)) = 10 -> b = -20a (1) y-koordinat af vertex: y = y (10) = (10) ^ 2a + 10b + c = 8 = = 100a + 10b + c = 8 (2) Parabola passerer gennem punktet (5, 58) y (5) = 25a + 5b + c = 58 (3). Tag (2) - (3): 75a + 5b = -58. Udskift b derefter med (-20a) (1) 75a - 100a = -50 -25a = -50 -> a = 2 -> b = -20a = -40 Fra (3) -> 50 - 200 + c = 58 -> c = 258 - 50 = 208 Ligning af parabolen: y = 2x ^
Hvad er ligningen af parabolen, der har et vertex ved (10, 8) og går gennem punkt (5,83)?
Faktisk er der to ligninger, der opfylder de angivne betingelser: y = 3 (x - 10) ^ 2 + 8 og x = -1/1125 (y-8) ^ 2 + 10 En graf af begge paraboler og punkterne er inkluderet i forklaringen. Der er to generelle vertexformer: y = a (xh) ^ 2 + k og x = a (yk) ^ 2 + h hvor (h, k) er vertexet Dette giver os to ligninger hvor "a" er ukendt: y = a (x - 10) ^ 2 + 8 og x = a (y-8) ^ 2 + 10 For at finde "a" for begge, erstatter punktet (5,83) 83 = a (5 - 10) ^ 2 +8 og 5 = a (83-8) ^ 2 + 10 75 = a (-5) ^ 2 og -5 = a (75) ^ 2 a = 3 og a = -1/1125 De to ligninger er: y = 3 (x - 10) ^ 2 + 8 og x = -1/1125 (y-8) ^ 2 +