Svar:
Forklaring:
Ligningen af en st linje parallelt med
Igen går det igennem
Så
Derfor er den krævede ligning
Svar:
Ligningens ligning er
Forklaring:
Hældningen af linjen
Svar:
Graflinjen parallelt med
Forklaring:
Standard ligningsformular
Hvor m er graden
Bemærk at graden er mængden op eller ned for mængden af langs. Tænk på hældningens hældning.
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Givet;
koefficienten af
Så
Vi får at vide, at det går gennem punktet
Så ved substitution har vi
Tilføje
Så
En linje går gennem (8, 1) og (6, 4). En anden linje går gennem (3, 5). Hvad er et andet punkt, at den anden linje kan passere, hvis den er parallel med den første linje?
(1,7) Så vi må først finde retningsvektoren mellem (8,1) og (6,4) (6,4) - (8,1) = (- 2,3) Vi ved, at en vektorligning består af en positionsvektor og en retningsvektor. Vi ved, at (3,5) er en position på vektor ligningen, så vi kan bruge det som vores positionsvektor, og vi ved, at det er parallel den anden linje, så vi kan bruge den retningsvektor (x, y) = (3, 4) + s (-2,3) For at finde et andet punkt på linjen skal du bare erstatte et tal i s bortset fra 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Så (1,7) er endnu et andet punkt.
En linje passerer gennem (4, 3) og (2, 5). En anden linje går gennem (5, 6). Hvad er et andet punkt, at den anden linje kan passere, hvis den er parallel med den første linje?
(3,8) Så vi må først finde retningsvektoren mellem (2,5) og (4,3) (2,5) - (4,3) = (- 2,2) Vi ved, at en vektorligning består af en positionsvektor og en retningsvektor. Vi ved, at (5,6) er en position på vektor ligningen, så vi kan bruge det som vores positionsvektor, og vi ved, at det er parallel den anden linje, så vi kan bruge den retningsvektor (x, y) = (5, 6) + s (-2,2) For at finde et andet punkt på linjen skal du bare erstatte et tal i s fra 0, så vi kan vælge 1 (x, y) = (5,6) +1 (-2,2) = (3,8) Så (3,8) er et andet andet punkt.
En linje passerer gennem (6, 2) og (1, 3). En anden linje går gennem (7, 4). Hvad er et andet punkt, at den anden linje kan passere, hvis den er parallel med den første linje?
Den anden linje kunne passere gennem punktet (2,5). Jeg finder den nemmeste måde at løse problemer ved at bruge punkter på en graf er at, godt, graf det ud.Som du kan se ovenfor har jeg gravet de tre punkter - (6,2), (1,3), (7,4) - og mærket dem henholdsvis "A", "B" og "C". Jeg har også tegnet en linje gennem "A" og "B". Det næste trin er at tegne en vinkelret linje, der løber gennem "C". Her har jeg lavet et andet punkt, "D", på (2,5). Du kan også flytte punkt "D" på tværs af linjen for at