Hvordan løser du 2cos2x-3sinx = 1?

Hvordan løser du 2cos2x-3sinx = 1?
Anonim

Svar:

# x = arcsin (1/4) + 360 ^ circ k eller #

# x = (180 ^ circ - arcsin (1/4)) + 360 ^ circ k eller #

#x = -90 ^ circ + 360 ^ circ k # for heltal # K #.

Forklaring:

# 2 cos 2x - 3 sin x = 1 #

Den nyttige dobbeltvinkelformel for cosinus her er

#cos 2x = 1 - 2 sin ^ 2 x #

# 2 (1 - 2 sin ^ 2 x) - 3 sin x = 1 #

# 0 = 4 sin ^ 2 x + 3 sin x - 1 #

# 0 = (4 sin x - 1) (sin x + 1) #

# sin x = 1/4 eller synd x = -1 #

# x = arcsin (1/4) + 360 ^ circ k eller x = (180 ^ circ-arcsin (1/4)) + 360 ^ circ k eller x = -90 ^ circ + 360 ^ circ k # for heltal # K #.

Svar:

# rarrx = npi + (- 1) ^ n * sin ^ (- 1) (1/4) eller npi + (- 1) ^ n * (- pi / 2) # # NrarrZ #

Forklaring:

# Rarr2cos2x-3sinx-1 = 0 #

# Rarr2 (1-2sin ^ 2x) -3sinx-1 = 0 #

# Rarr2-4sin ^ 2x-3sinx-1 = 0 #

# Rarr4sin ^ 2x + 3sinx-1 = 0 #

#rarr (2sinx) ^ 2 + 2 * (2sinx) * (3/4) + (3/4) ^ 2- (3/4) ^ 2-1 = 0 #

#rarr (2sinx + 3/4) ^ 2 = 1 + 9/16 = 25/16 #

# Rarr2sinx + 3/4 = + - sqrt (25/16) = + - (5) / 4 #

# Rarr2sinx = + - 5 / 4-3 / 4 = (+ - 5-3) / 4 #

#rarrsinx = (+ - 5-3) / 8 #

tager # + Ve # tegn, vi får

# Rarrsinx = (5-3) / 8 = 1/4 #

# Rarrx = NPI + (- 1) ^ n * sin ^ (- 1) (1/4) # # NrarrZ #

tager # Ve # tegn, vi får

#rarrsinx = (- 5-3) / 8 = -1 #

# Rarrx = NPI + (- 1) ^ n * (- pi / 2) # hvor # NrarrZ #