Svar:
Forklaring:
Vi er instrueret til at bestemme kvadratroden. Så hvis vi deler den givne værdi op i primære faktorer og ser efter værdier, kan vi gruppere som kvadreret, så har vi vores løsning.
Brug af et primært faktor træ.
(God ide at huske nogle af de primære tal, hvis du kan)
Hvis du nogensinde er i tvivl om, hvilke faktorer der er, er der intet, der forhindrer dig til at scrible et hurtigtfaktræ på siden af din arbejdsside.
5, 3 og 13 er primtal som
Vær opmærksom på, at det eneste tal, du kan parre som en firkant, er 2. Så skriver vi:
Hvad er [5 (kvadratroden af 5) + 3 (kvadratroden af 7)] / [4 (kvadratroden af 7) - 3 (kvadratroden af 5)]?
(159 + 29sqrt (35)) / 47 farve (hvid) ("XXXXXXXX") forudsat at jeg ikke har lavet nogen aritmetiske fejl (5 (sqrt (5)) + 3 (sqrt (7))) / Rationaliser nævneren ved at multiplicere med konjugatet: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16,7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Hvad er den forenklede form for kvadratroden af 10 - kvadratroden af 5 over kvadratroden af 10 + kvadratroden af 5?
(sqrt) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) ) "(sqrt (2) -1) / (sqrt (2) +1) farve (hvid) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) Farve (hvid) (" XXX ") = sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) farve (hvid) ("XXX") = (2-2sqrt2 + 1) / (2-1) farve ( "XXX") = 3-2sqrt (2)
Hvad er kvadratroden af 7 + kvadratroden på 7 ^ 2 + kvadratroden af 7 ^ 3 + kvadratroden på 7 ^ 4 + kvadratroden på 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Det første vi kan gøre er at annullere rødderne på dem med de lige kræfter. Siden: sqrt (x ^ 2) = x og sqrt (x ^ 4) = x ^ 2 for ethvert tal, kan vi bare sige at sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nu kan 7 ^ 3 omskrives som 7 ^ 2 * 7, og at 7 ^ 2 kan komme ud af roden! Det samme gælder for 7 ^ 5, men det er omskrevet som 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) N