Svar:
Forklaring:
Ved at vælge ordet 'direkte' har vi situationen
hvor
Lade
Ved brug af
Vi har den 'oprindelige betingelse' for det 'bestilte par'
Dermed
Antag at y varierer direkte med x, og når y er 16, x er 8. a. Hvad er den direkte variation ligning for dataene? b. Hvad er y, når x er 16?
Y = 2x, y = 32 "den oprindelige sætning er" ypropx "for at konvertere til en ligning multiplicere med k den konstante variationsændring" rArry = kx "for at finde k bruge den givne tilstand" "når" y = 16, x = 8 y = kxrArrk = y / x = 16/8 = 2 "ligning er" farve (rød) (bar (ul (| farve (hvid) (2/2) farve (sort) (y = 2x) farve ) (2/2) |)) "når" x = 16 y = 2xx16 = 32
Antag at y varierer direkte med x, og når y er 2, er x 3. a. Hvad er den direkte variation ligning for dataene? b. Hvad er x, når y er 42?
Giv y, x prop x så, y = kx (k er en konstant) For y = 2, x = 3 så, k = 2/3 Så kan vi skrive, y = 2/3 x ..... ................... a hvis, y = 42 derefter, x = (3/2) * 42 = 63 ............ .... b
Det ordnede par (1,5, 6) er en løsning med direkte variation, hvordan skriver du ligningen for direkte variation? Representerer invers variation. Representerer direkte variation. Representerer heller ikke.?
Hvis (x, y) repræsenterer en direkte variation løsning så y = m * x for nogle konstante m I betragtning af paret (1,5,6) har vi 6 = m * (1.5) rarr m = 4 og den direkte variation ligning er y = 4x Hvis (x, y) repræsenterer en invers variation løsning, så y = m / x for nogle konstante m I betragtning af paret (1,5,6) har vi 6 = m / 1.5 rarr m = 9 og den inverse variation ligning er y = 9 / x Enhver ligning, som ikke kan omskrives som en af ovenstående, er hverken en direkte eller en inversvariation ligning. For eksempel er y = x + 2 hverken.