Svar:
Forklaring:
Vi vil gerne vide, hvornår hastigheden er faldende, hvilket vil betyde, at accelerationen er mindre end 0.
Acceleration er det andet derivat af position, så udligner ligningen to gange.
(Hvis du er komfortabel med at bruge produktreglen med magt, gå direkte ind i afledningen, ellers forenkle ligningen først ved brug af algebra):
Tag det første derivat:
Tag det andet derivat:
Indstil denne accelerationsfunktion til <0 og løse for
I problemstillingen er tiden tid
Hvilket har mere momentum, et objekt på 500 kg, der bevæger sig ved 1 / 4m / s eller en 50kg objekt, der bevæger sig ved 20m / s?
"50 kg" objekt Momentum ("p") er givet ved "p = masse × hastighed" "p" _1 = 500 "kg" × 1/4 "m / s" = 125 "kg m / s" "p" _2 = 50 "kg" × 20 "m / s" = 1000 "kg m / s" "p" _2> "p" _1
En partikel P bevæger sig i en ret linje fra punkt O med hastigheden 2m / s accelerationen af P på tidspunktet t efter at have forladt O er 2 * t ^ (2/3) m / s ^ 2 Vis at t ^ (5/3 ) = 5/6 Når hastigheden af P er 3m / s?
"Se forklaring" a = {dv} / {dt} => dv = a dt => v - v_0 = 2 int t ^ (2/3) dt => v = v_0 + 2 (3/5) t ^ 5/3) + C t = 0 => v = v_0 => C = 0 => 3 = 2 + (6/5) t ^ (5/3) => 1 = (6/5) t ^ / 3) => 5/6 = t ^ (5/3)
Kraften anbragt mod et objekt, som bevæger sig horisontalt på en lineær bane, beskrives af F (x) = x ^ 2-3x + 3. Ved hvor meget ændrer objektets kinetiske energi som objektet bevæger sig fra x i [0, 1]?
Newtons anden bevægelseslov: F = m * a Definitioner af acceleration og hastighed: a = (du) / dt u = (dx) / dt Kinetisk energi: K = m * u ^ 2/2 Svar er: ΔK = 11 / 6 kg * m ^ 2 / s ^ 2 Newtons anden bevægelseslov: F = m * ax ^ 2-3x + 3 = m * a At erstatte a = (du) / dt hjælper ikke med ligningen, da F ern ' t givet som en funktion af t men som en funktion af x Men: a = (du) / dt = (du) / dt * (dx) / dx = (dx) / dt * (du) / dx Men (dx) / dt = u så: a = (dx) / dt * (du) / dx = u * (du) / dx Ved at erstatte den ligning vi har, har vi en differentialekvation: x ^ 2-3x + 3 = m * u (du) / dx (x ^ 2-3x + 3)