Svar:
Vektorprojektionen er
Forklaring:
Vektorprojektionen af
Prikken produktet er
Modulet af
Derfor,
Hvad er projektionen af (2i -3j + 4k) på (- 5 i + 4 j - 5 k)?
Svaret er = -7 / 11 <-5,4, -5> Vektorprojektionen af vecb på veca er = (veca.vecb) / (|veca|) ^ 2veca Dotproduktet er veca.vecb = <2, -3,4>. <- 5,4, -5> = (- 10-12-20) = - 42 Modulet af veca er = | <-5,4, -5> | = sqrt (25 + 16 +25) = sqrt66 Vektorfremskrivningen er = -42 / 66 <-5,4, -5> = -7 / 11 <-5,4, -5>
Hvad er projektionen af (2i + 3j - 7k) på (3i - 4j + 4k)?
Svaret er = 34/41 <3, -4,4> Vektorfremspringet af vecb på veca er = (veca.vecb) / ( vecaidel ^ 2) veca Dotproduktet er veca.vecb = <2,3 , -7>. <3, -4,4> = (6-12-28) = 34 Modulet af veca er = veca| = <3, -4,4> = sqrt (9 + 16 + 16) = sqrt41 Vektorprojektionen er = 34/41 <3, -4,4>
Hvad er projektionen af (32i-38j-12k) på (18i -30j -12k)?
Vec c = <24,47i, -40,79j, -16,32k> vec a = <32i, -38j, -12k> vec b = <18i, -30j, -12k> vec a * vec b = 18 * 32 + 38 * 30 + 12 * 12 = vec a * vec b = 576 + 1140 + 144 = 1860 | b | = sqrt (18 ^ 2 + 30 ^ 2 + 12 ^ 2) | b | = sqrt (324 + 900 +144) | b | = sqrt1368 vec c = (vec a * vec b) / (| b | * | b |) * vec b vec c = 1860 / (sqrt 1368 * sqrt 1368) <18i, -30j, - 12k> vec c = 1860/1368 <18i, -30j, -12k> vec c = <(1860 * 18i) / 1368, (-1860 * 30j) / 1368, (- 1860 * 12k) / 1368> vec c = <24,47i, -40,79j, -16,32k>