Svar:
Forklaring:
Du kan differentiere denne funktion ved at bruge sum og magt regler. Bemærk, at du kan omskrive denne funktion som
Nu fortæller summoreglen dig det for funktioner, der tager formularen
du kan finde derivatet af
I dit tilfælde har du
For at differentiere disse fraktioner skal du bruge strømreglen
Så, din derivat kommer ud til at være
alternativt, kan du bruge kædelegemet til at differentiere
I dit tilfælde har du
Funktionen f (x) = tan (3 ^ x) har et nul i intervallet [0, 1.4]. Hvad er derivatet på dette tidspunkt?
Pi ln3 Hvis tan (3x) = 0, så er sin (3x) = 0 og cos (3x) = + -1 Derfor er 3x = kpi for et helt tal k. Vi fik at vide, at der er et nul på [0,1,4]. Det nul er IKKE x = 0 (siden tan 1! = 0). Den mindste positive løsning skal have 3 ^ x = pi. Derfor er x = log_3 pi. Lad os nu se på derivatet. f '(x) = sec ^ 2 (3 ^ x) * 3 ^ x ln3 Vi kender ovenfra at 3 ^ x = pi, så på dette tidspunkt f' = sec ^ 2 (pi) * pi ln3 = (- 1 ) ^ 2 pi ln3 = pi ln3
Hvad er derivatet af (-x ^ 2 + 5) / (x ^ 2 + 5) ^ 2?
Y '= (-2x (x ^ 2 + 5) ^ 2-2 (-x ^ 2 + 5) (x ^ 2 + 5) (2x)) / ((x ^ 2 + 5) ^ 2) ^ 2 y '= (-2x (x ^ 2 + 5) ^ 2-2 (-x ^ 2 + 5) (x ^ 2 + 5) (2x)) / ((x ^ 2 + 5) ^ 2) ^ 2 y '= (-2x (x ^ 4 + 10x +25) - 4x (-x ^ 4-annullere (5x ^ 2) + annullere (5x ^ 2 + 25)) / ((x ^ 2 +5) ^ 4 y '= (-2x ^ 5 - 20x ^ 2 -50x + 4x ^ 5-100x) / ((x ^ 2 + 5) ^ 4 y' = (2x ^ 5 - 20x ^ 2 - 150x) / ( x ^ 2 + 5) ^ 4
Hvordan bruger du grænse definitionen af derivatet for at finde derivatet af y = -4x-2?
-4 Definitionen af derivat er angivet som følger: lim (h-> 0) (f (x + h) -f (x)) / h Lad os anvende ovenstående formel på den givne funktion: lim (h-> 0) (f (x + h) -f (x)) / h = lim (h-> 0) (- 4 (x + h) -2 - (- 4x-2)) / h = lim (h-> 0 ) (- 4x-4h-2 + 4x + 2) / h = lim (h-> 0) ((- 4h) / h) Forenkling ved h = lim (h-> 0) (- 4) = -4