Svar:
Forklaring:
Ligningen af en parabola i
#color (blå) "vertex form" # er.
#COLOR (rød) (bar (ul (| farve (hvid) (2/2) farve (sort) (y = a (x-h) ^ 2 + k) farve (hvid) (2/2) |))) # hvor (h, k) er koordinaterne til vertexet og a er en konstant.
# "ved hjælp af metoden for" farve (blå) "udfyldning af firkanten" # tilføje
# (1/2 "koefficient for x-termen") ^ 2 "til" x ^ 2-5x # Da vi tilføjer en værdi, der ikke er der, skal vi også trække denne værdi fra.
# "tilføj / subtrahere" (-5/2) ^ 2 = 25/4 #
# Y = (x ^ 2-5xcolor (rød) (+ 25/4)) farve (rød) (- 25/4) -6 #
#color (hvid) (y) = (x-5/2) ^ 2-49 / 4larrcolor (rød) "i vertex form" #
Hvad er vertexformen af y = -3x ^ 2 - 5x + 9?
Y = -3 (x + 5/6) ^ 2 + 133/12 y = -3 [x ^ 2 + 5/3] +9 y = -3 [(x + 5/6) ^ 2-25 / 36 ] +9 y = -3 (x + 5/6) ^ 2 + 25/12 + 9 y = -3 (x + 5/6) ^ 2 + 133/12
Hvad er vertexformen for x ^ 2 -2x-8?
(x-1) ^ 2-9> "ligningen af en parabola i" farve (blå) "vertex form" er. farve (hvid) (2/2) farve (sort) (y = a (xh) ^ 2 + k) farve (hvid) (2/2) |)) "hvor "(h, k)" er koordinaterne til vertexet og en "" er en multiplikator "" for at opnå parabolen i denne form "farve (blå)" fuldføre firkanten "•" koefficienten for "x ^ 2" termen skal være 1, som den er "•" tilføj / subtraher "(1/2" koefficient for x-termen ") ^ 2" til "x ^ 2-2x x ^ 2 + 2 (-1) xfarve (rød) +1) farve (r
Hvad er vertexformen af # 1y = 7x ^ 2 + 5x - 11?
Find kryds af y = 7x ^ 2 + 5x - 11 Vertex (-5/14, 1981/146) x-koordinat af vertex: x = (-b) / 2a = -5/14 y-koordinat af vertex: y = y (-5/14) = 7 (25/196) + 5 (-5/14) - 11 = = 175/196 - 25/14 - 11 = 1981/196 Vertexform: y = 7 (x + 5 / 14) ^ 2 + 1981/196