Svar:
Find først hældningen af linjen mellem disse punkter.
Forklaring:
Formlen for hældning m =
m =
m =
m =
m =
Hældningen af en linje vinkelret på denne har en hældning, der er den negative gensidige af m.
Så den nye hældning er
Øvelse øvelser:
- Her er grafen for en lineær funktion. Find linjens hældning vinkelret på denne.
graf {y = 1 / 2x + 1 -10, 10, -5, 5} eh ligninger af linierne vinkelret
- Nedenfor er lineære funktionsækninger eller lineære funktionsegenskaber. Find ligningerne af linjerne vinkelret på disse funktioner:
a) 2x + 5y = -3
b) y - 2 =
c) Har en x-intercept på (2,0) og en y-intercept på (-5,0).
Held og lykke!
Hvad er hældningen af en hvilken som helst linje vinkelret på den linje, der passerer gennem (-2,8) og (0,4)?
Se en løsningsproces nedenfor: Først skal vi bestemme hældningen af linjen, der går gennem de to punkter i problemet. Hældningen kan findes ved hjælp af formlen: m = (farve (rød) (y_2) - farve (blå) (y_1)) / (farve (rød) (x_2) - farve (blå) (x_1)) Hvor m er hældningen og (farve (blå) (x_1, y_1)) og (farve (rød) (x_2, y_2)) er de to punkter på linjen. Ved at erstatte værdierne fra punkterne i problemet gives: m = (farve (rød) (4) - farve (blå) (8)) / (farve (rød) (0) - farve (blå) (- 2)) = (farve (rød) (0) + farve (blå)
Bevis at givet en linje og ikke pege på den linje, er der netop en linje, der passerer gennem det punkt vinkelret gennem den linje? Du kan gøre dette matematisk eller gennem konstruktion (de gamle grækere gjorde)?
Se nedenunder. Lad os antage, at den angivne linje er AB, og punktet er P, som ikke er på AB. Nu, lad os antage, vi har tegnet en vinkelret PO på AB. Vi må bevise, at denne PO er den eneste linje, der passerer gennem P, der er vinkelret på AB. Nu skal vi bruge en konstruktion. Lad os konstruere en anden vinkelret PC på AB fra punkt P. Nu beviset. Vi har, OP vinkelret AB [Jeg kan ikke bruge det vinkelrette tegn, hvordan annyoing] Og også PC vinkelret AB. Så, OP || PC. [Begge er perpendicularer på samme linje.] Nu har både OP og PC punkt P fælles og de er parallelle. Det bety
Skriv punkt-skråning form af ligningen med den givne hældning, der passerer gennem det angivne punkt. A.) linjen med hældning -4 passerer gennem (5,4). og også B.) linjen med hældning 2 passerer gennem (-1, -2). Vær venlig at hjælpe, dette forvirrende?
Y-4 = -4 (x-5) "og" y + 2 = 2 (x + 1)> "ligningen af en linje i" farve (blå) "punkt-skråning form" er. • farve (hvid) (x) y-y_1 = m (x-x_1) "hvor m er hældningen og" (x_1, y_1) "et punkt på linjen" (A) "givet" m = -4 " "(x_1, y_1) = (5,4)" erstatter disse værdier i ligningen giver "y-4 = -4 (x-5) larrcolor (blå)" i punkt-skråning form "(B)" givet "m = 2 "og" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor i punkt-skråning form "