Svar:
Forklaring:
Bemærk, at fra den anden pythagoranske identitet, at
Det betyder, at brøkdelen er lig med 1, og det efterlader os den ret simple integral af
Svar:
Forklaring:
Interessant nok kan vi også bemærke, at dette passer til formen af arctangent-integreret, nemlig:
# Int1 / (1 + u ^ 2) du = arctan (u) #
Her, hvis
# Intsec ^ 2x / (1 + tan ^ 2x) dx = int1 / (1 + u ^ 2) du = arctan (u) = arctan (tanx) = x #
Tilføjelse af grænserne:
# Int_0 ^ (pi / 4) sek ^ 2x / (1 + tan ^ 2x) dx = x _0 ^ (pi / 4) = pi / 4-0 = pi / 4 #
Hvordan vurderer du den konkrete integral int ((sqrtx + 1) / (4sqrtx)) ^ 2 dx fra [3,9]?
Int_3 ^ 9 ((sqrtx + 1) / (4sqrtx)) ^ 2 * dx = 9/8-sqrt3 / 4 + 1/16 * ln 3 = 0,7606505661495 Fra det givne, int_3 ^ 9 ((sqrtx + 1) / 4sqrtx)) ^ 2 * dx Vi begynder ved først at forenkle integand int_3 ^ 9 ((sqrtx + 1) / (4sqrtx)) ^ 2 * dx int_3 ^ 9 ((sqrtx) / (4sqrtx) + 1 / (4sqrtx)) ^ 2 * dx int_3 ^ 9 (1/4 + 1 / (4sqrtx)) ^ 2 * dx int_3 ^ 9 (1/4) ^ 2 * (1 + 1 / (sqrtx)) ^ 2 * dx int_3 ^ 9 1/16) * (1 + 2 / (sqrtx) + 1 / x) dx (1/16) * int_3 ^ 9 (1 + 2 * x ^ (- 1/2) + 1 / x) dx (1 / 16) * [x + (2 * x ^ (1/2)) / (1/2) + ln x] _3 ^ 9 (1/16) * [x + 4 * x ^ (1/2) + ln x ] (3 + 4 * 3 ^ (1/2) + ln 3)] (1/16) * [9 + 12 + ln 9-3
Hvordan vurderer du den konkrete integral int (2t-1) ^ 2 fra [0,1]?
1/3 int_0 ^ 1 (2t-1) ^ 2dt Lad u = 2t-1 indebærer du = 2dt derfor dt = (du) / 2 Omregning af grænserne: t: 0rarr1 betyder u: -1rarr1 Integral bliver: 1 / 2int_ -1) ^ 1u ^ 2du = 1/2 [1/3u ^ 3] _ (- 1) ^ 1 = 1/6 [1 - (-1)] = 1/3
Hvordan vurderer du den konkrete integral int sin2theta fra [0, pi / 6]?
Int_0 ^ (pi / 6) sin2theta = 1/4 int_0 ^ (pi / 6) sin (2theta) d theta let farve (rød) (u = 2theta) farve (rød) (du = 2d theta) farve (rød) d) = grænsen ændres til farve (blå) ([0, pi / 3]) int_0 ^ (pi / 6) sin2thetad theta = int_color (blå) 0 ^ farve (blå) (pi / 3) sinfarve (rød) (u (du) / 2) = 1 / 2int_0 ^ (pi / 3) sinudu Som vi ved theintsinx = -cosx = -1/2 (cos (pi / 3) -cos0) = -1 / 2 (1 / 2-1) = - 1/2 * -1 / 2 = 1/4 derfor er int_0 ^ (pi / 6) sin2theta = 1/4