Jacks højde er 2/3 af Leslie's højde. Leslie's højde er 3/4 af Lindsay's højde. Hvis Lindsay er 160 cm høj, find Jacks højde og Leslie's højde?
Leslie's = 120cm og Jacks højde = 80cm Leslie's højde = 3 / annullér4 ^ 1xxcancel160 ^ 40/1 = 120cm Jacks højde = 2 / annullér3 ^ 1xxcancel120 ^ 40/1 = 80cm
Vand lækker ud af en inverteret konisk tank med en hastighed på 10.000 cm3 / min samtidig med at vandet pumpes i tanken med konstant hastighed Hvis tanken har en højde på 6m og diameteren øverst er 4m og hvis vandstanden stiger med en hastighed på 20 cm / min, når vandets højde er 2m, hvordan finder du den hastighed, hvormed vandet pumpes i tanken?
Lad V være vandmængden i tanken, i cm ^ 3; lad h være dybden / højden af vandet, i cm; og lad r være radius af overflade af vandet (ovenpå), i cm. Da tanken er en inverteret kegle, er det også vandets masse. Da tanken har en højde på 6 m og en radius på toppen af 2 m, betyder lignende trekanter at frac {h} {r} = frac {6} {2} = 3 således at h = 3r. Volumenet af den inverterede kegle vand er så V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Differentier nu begge sider med hensyn til tid t (i minutter) for at få frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} (
Hvis et projektil er skudt i en vinkel på (7pi) / 12 og med en hastighed på 2 m / s, hvornår når den maksimal højde?
Tid t = (5sqrt6 + 5sqrt2) /98=0.1971277197 "" second For den lodrette forskydning yy = v_0 sin theta * t + 1/2 * g * t ^ 2 Vi maksimerer forskydning y med hensyn til t dy / dt = v_0 sin theta * dt / dt + 1/2 * g * 2 * t ^ (2-1) * dt / dt dy / dt = v_0 sin theta + g * t sæt dy / dt = 0 løse derefter for t v_0 sin theta + g = t = 0 t = (- v_0 sintheta) / gt = (- 2 * sin ((7pi) / 12)) / (- 9,8) Bemærk: synd ((7pi) / 12) = synd / 4) = (- 2 * ((sqrt (6) + sqrt (2))) / 4) / (- 9,8) t = (5sqrt6 + 5sqrt2 ) /98=0.1971277197 "" anden Gud velsigne .... Jeg håber forklaringen er nyttig.