Svar:
Forklaring:
Jeg vil bare svare på den del om konvergensen, hvor den første del er blevet besvaret i kommentarerne. Vi kan bruge
Serien til højre er serieformularen til den berømte Riemann Zeta-funktion. Det er velkendt, at denne serie konvergerer, når
Resultatet af Riemann Zeta funktionerne er meget velkendt, hvis du vil have en ab initio svar, du kan prøve den integrerede test for konvergens.
Hældningen m af en lineær ligning kan findes ved hjælp af formlen m = (y_2 - y_1) / (x_2-x_1), hvor x-værdierne og y-værdierne kommer fra de to bestilte par (x_1, y_1) og (x_2 , y_2), Hvad er en ækvivalent ligning løst for y_2?
Jeg er ikke sikker på, at dette er det, du ønskede, men ... Du kan omarrangere dit udtryk for at isolere y_2 ved at bruge få "Algaebric Movements" på tværs af = tegnet: Begyndende fra: m = (y_2-y_1) / (x_2-x_1) x_2-x_1) til venstre på tværs af = tegnet, der husker at hvis det oprindeligt blev delt, ved at sende ens tegn, vil det nu multiplicere: (x_2-x_1) m = y_2-y_1 Næste tager vi y_1 til venstre, der husker at ændre funktionen igen: fra subtraktion til sum: (x_2-x_1) m + y_1 = y_2 Nu kan vi "læse" den omlejrede udtrykt udtrykt i y_2 som: y_2 = (x_2-x_1
Ved hjælp af domæneværdierne {-1, 0, 4}, hvordan finder du rækkeviddeværdierne for relation f (x) = 3x-8?
Farve (rød) (- 8), farve (rød) 4} Givet domænet {farve (magenta) (- 1), farve (blå) 0, farve (grøn) 4} for funktionen f (farve (brun) x) = 3farve (brun) x-8 rækkevidden vil være farve (hvid) ("XXX") {f (farve (brun) x = farve ) (- 11), farve (hvid) ("XXX {") f (farve (brun) x = farve blå) 0) = 3xxcolor (blå) 0-8 = farve (rød) (- 8), farve (hvid) ("XXX {") f (farve (brun) x = farve (grøn) 4) = 3xxfarve ) 4-8 = farve (rød) 4 farve (hvid) ("XXX")}
Hvad er funktionsreglen, hvor y-værdierne er 1, 8, 64 svarende til x-værdierne, der er 1, 2, 3?
Et eksempel på funktioner, der følger reglen, er y = 8 ^ {x-1} Jeg håber, at dette var nyttigt.