Svar:
Første skridt er at finde linjens hældning igennem
Forklaring:
Hældning af linjen igennem
Hvis hældningen på en linje er
Formen af en linje er
Så ligningen af den linje, vi ønsker, er
Hvad er ligningen for den linje, der passerer gennem (-1,3) og er vinkelret på linjen, der passerer gennem følgende punkter: (- 2,4), (- 7,2)?
Se en løsningsproces nedenfor: Først skal vi finde hældningen af linien, der passerer gennem (-2, 4) og (-7, 2). Hældningen kan findes ved hjælp af formlen: m = (farve (rød) (y_2) - farve (blå) (y_1)) / (farve (rød) (x_2) - farve (blå) (x_1)) Hvor m er hældningen og (farve (blå) (x_1, y_1)) og (farve (rød) (x_2, y_2)) er de to punkter på linjen. At erstatte værdierne fra punkterne i problemet giver: m = (farve (rød) (2) - farve (blå) (4)) / (farve (rød) (- 7) - farve (blå) (- 2)) = (farve (rød) (2) - farve (blå) (4)) / (far
Hvad er ligningen for den linje, der passerer gennem (5,7) og er vinkelret på linien, der passerer gennem følgende punkter: (1,3), (- 2,8)?
(y - farve (rød) (7)) = farve (blå) (3/5) (x - farve (rød) (5)) Eller y = 3 / 5x + 4 Først finder vi hældningen af vinkelret linje. Hældningen kan findes ved hjælp af formlen: m = (farve (rød) (y_2) - farve (blå) (y_1)) / (farve (rød) (x_2) - farve (blå) (x_1)) Hvor m er hældningen og (farve (blå) (x_1, y_1)) og (farve (rød) (x_2, y_2)) er de to punkter på linjen. Ved at erstatte de to punkter fra problemet gives: m = (farve (rød) (8) - farve (blå) (3)) / (farve (rød) (- 2) - farve (blå) (1)) m = 5 / -3 En vinkelret linje vil ha
Bevis at givet en linje og ikke pege på den linje, er der netop en linje, der passerer gennem det punkt vinkelret gennem den linje? Du kan gøre dette matematisk eller gennem konstruktion (de gamle grækere gjorde)?
Se nedenunder. Lad os antage, at den angivne linje er AB, og punktet er P, som ikke er på AB. Nu, lad os antage, vi har tegnet en vinkelret PO på AB. Vi må bevise, at denne PO er den eneste linje, der passerer gennem P, der er vinkelret på AB. Nu skal vi bruge en konstruktion. Lad os konstruere en anden vinkelret PC på AB fra punkt P. Nu beviset. Vi har, OP vinkelret AB [Jeg kan ikke bruge det vinkelrette tegn, hvordan annyoing] Og også PC vinkelret AB. Så, OP || PC. [Begge er perpendicularer på samme linje.] Nu har både OP og PC punkt P fælles og de er parallelle. Det bety