Svar:
Forklaring:
Formlen der beskriver denne befolknings variation er givet af:
Hvor
I problemet
Så
# P = 951,300 * (1-0.014) ^ 5 = 951.300 * 0.986 ^ 5 = 886.548 #
Det anslås, at verdens befolkning stiger med en gennemsnitlig årlig sats på 1,3%. Hvis verdens befolkning var omkring 6.472.416.997 i år 2005, hvad er verdens befolkning i år 2012?
Verdens befolkning i år 2012 er 7.084.881.769 Befolkningen i år 2005 var P_2005 = 6472416997 Årlig stigning er r = 1,3% Periode: n = 2012-2005 = 7 år Befolkningen i år 2012 er P_2012 = P_2005 * (1 + r / 100) ^ n = 6472416997 * (1 + 0,013) ^ 7 = 6472416997 * (1.013) ^ 7 ~~ 7.084.881.769 [Ans]
Funktionen p = n (1 + r) ^ t giver den nuværende befolkning i en by med en vækstrate på r, t år efter at befolkningen var n. Hvilken funktion kan bruges til at bestemme befolkningen i enhver by, der havde en befolkning på 500 mennesker for 20 år siden?
Befolkningen vil blive givet ved P = 500 (1 + r) ^ 20 Da befolkningen for 20 år siden var 500 væksthastighed (i byen er r (i brøkdele - hvis det er r% gør det r / 100) og nu 20 år senere vil befolkningen blive givet ved P = 500 (1 + r) ^ 20
Befolkningen i et cit vokser med en sats på 5% hvert år. Befolkningen i 1990 var 400.000. Hvad ville være den forudsagte nuværende befolkning? I hvilket år vil vi forudsige befolkningen for at nå 1.000.000?
11. oktober 2008. Vækst i n år er P (1 + 5/100) ^ n Startværdien af P = 400 000, 1. januar 1990. Så vi har 400000 (1 + 5/100) ^ n Så vi nødt til at bestemme n for 400000 (1 + 5/100) ^ n = 1000000 Del begge sider med 400000 (1 + 5/100) ^ n = 5/2 Tag logs n ln (105/100) = ln (5/2 ) n = ln 2,5 / ln 1,05 n = 18.780 år progression til 3 decimaler Så året bliver 1990 + 18.780 = 2008.78 Befolkningen når 1 mio. den 11. oktober 2008.