Svar:
Vandet fordampes ikke. Den endelige temperatur af vandet er:
Så temperaturen ændres:
Forklaring:
Den samlede varme, hvis begge forbliver i samme fase, er:
Indledende varme (før blanding)
Hvor
Nu skal vi være enige om at:
- Varmens varmekapacitet er:
- Tætheden af vand er:
Så vi har:
Slutvarme (efter blanding)
- Den endelige temperatur på både vandet og objektet er almindeligt.
- Også den samlede varme er ens.
Derfor:
Brug ligning til at finde den endelige temperatur:
Forudsat at trykket er atmosfærisk, fordampede vandet ikke, da kogepunktet er
Så temperaturen ændres:
Vand lækker ud af en inverteret konisk tank med en hastighed på 10.000 cm3 / min samtidig med at vandet pumpes i tanken med konstant hastighed Hvis tanken har en højde på 6m og diameteren øverst er 4m og hvis vandstanden stiger med en hastighed på 20 cm / min, når vandets højde er 2m, hvordan finder du den hastighed, hvormed vandet pumpes i tanken?
Lad V være vandmængden i tanken, i cm ^ 3; lad h være dybden / højden af vandet, i cm; og lad r være radius af overflade af vandet (ovenpå), i cm. Da tanken er en inverteret kegle, er det også vandets masse. Da tanken har en højde på 6 m og en radius på toppen af 2 m, betyder lignende trekanter at frac {h} {r} = frac {6} {2} = 3 således at h = 3r. Volumenet af den inverterede kegle vand er så V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Differentier nu begge sider med hensyn til tid t (i minutter) for at få frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} (
En beholder med et volumen på 14 liter indeholder en gas med en temperatur på 160 ° C. Hvis gasens temperatur ændres til 80 ° C uden ændringer i tryk, hvad skal beholderens nye volumen være?
7 tekst {L} Forudsat at gassen er ideel, kan dette beregnes på få forskellige måder. Kombineret gaslov er mere passende end den ideelle gaslov, og mere generelt (så du er bekendt med det vil gavne dig i fremtidige problemer oftere) end Charles 'lov, så jeg vil bruge den. frac {P_1 V_1} {T_1} = frac {P_2 V_2} {T_2} Omordnes for V_2 V_2 = frac {P_1 V_1} {T_1} frac {T_2} {P_2} Omordnes for at gøre proportionalvariable indlysende V_2 = frac {P_1} {P_2} frac {T_2} {T_1} V_1 Tryk er konstant, så uanset hvad det er, divideres det med sig selv. 1. Udskift i værdier for temperatur og volu
En beholder med et volumen på 7 liter indeholder en gas med en temperatur på 420 ° C. Hvis gasens temperatur ændres til 300 ° C uden ændringer i tryk, hvad skal beholderens nye volumen være?
Det nye volumen er 5L. Lad os starte med at identificere vores kendte og ukendte variabler. Det første volumen vi har er "7,0 L", den første temperatur er 420K, og den anden temperatur er 300K. Vores eneste ukendte er det andet volumen. Vi kan få svaret ved hjælp af Charles 'Law, som viser, at der er et direkte forhold mellem volumen og temperatur, så længe trykket og antallet af mol forbliver uændrede. Den ligning, vi bruger, er V_1 / T_1 = V_2 / T_2, hvor tallene 1 og 2 repræsenterer den første og anden betingelse. Jeg må også tilføje, at volumenet