Svar:
Afstanden mellem de to punkter er
Forklaring:
Husk først afstandsformlen:
Bemærk at du har fået pointene (2,3) og (-3, -2).
Lade
Lad os nu erstatte disse værdier i vores afstandsformel.
Et linjesegment har endepunkter ved (a, b) og (c, d). Linjesegmentet dilateres med en faktor r rundt (p, q). Hvad er linjesegmentets nye endepunkter og længde?
(a, b) til ((1-r) p + ra, (1-r) q + rb), (c, d) til ((1-r) p + rc, (1-r) q + rd) Ny længde l = r sqrt {(ac) ^ 2 + (bd) ^ 2}. Jeg har en teori alle disse spørgsmål er her, så der er noget for newbies at gøre. Jeg gør det generelle tilfælde her og se hvad der sker. Vi oversætter flyet så dilatationspunktet P kortene til oprindelsen. Derefter skaler dilatationen koordinaterne med en faktor r. Så oversætter vi flyet: A = = (A - P) + P = (1-r) P + r A Det er den parametriske ligning for en linje mellem P og A, med r = 0, der giver P, r = 1 giver A, og r = r giver A ', b
Hvad ville være afstanden mellem to byer, hvis et kort er tegnet til skalaen 1: 100, 000, og afstanden mellem 2 byer er 2 km?
Der er 100 cm i en meter og 1000 meter i en kilometer, så en skala på 1: 100.000 er en skala på 1cm: 1km. Afstanden på kortet mellem to byer, der er 2 km fra hinanden, ville være 2 cm.
Skitse grafen for y = 8 ^ x med angivelse af koordinaterne for punkter, hvor grafen krydser koordinatakserne. Beskriv fuldstændig transformationen, som transformerer grafen Y = 8 ^ x til grafen y = 8 ^ (x + 1)?
Se nedenunder. Eksponentielle funktioner uden vertikal transformation krydser aldrig x-aksen. Som sådan vil y = 8 ^ x ikke have x-aflytninger. Det vil have en y-intercept på y (0) = 8 ^ 0 = 1. Grafen skal ligne følgende. Grafen af y = 8 ^ (x + 1) er grafen for y = 8 ^ x flyttet 1 enhed til venstre, så det er y- aflytning ligger nu ved (0, 8). Du kan også se, at y (-1) = 1. graf {8 ^ (x + 1) [-10, 10, -5, 5]} Forhåbentlig hjælper dette!