Svar:
Segmentets længde er
Forklaring:
Formlen til beregning af afstanden mellem to punkter er:
At erstatte værdierne fra punkterne i problemet og løse giver:
Omkredsen af en trekant er 29 mm. Længden af den første side er to gange længden af den anden side. Længden af den tredje side er 5 mere end længden af den anden side. Hvordan finder du sidelængderne på trekanten?
S_1 = 12 s_2 = 6 s_3 = 11 Omkredsen af en trekant er summen af længderne af alle siderne. I dette tilfælde er det givet, at omkredsen er 29 mm. Så for denne sag: s_1 + s_2 + s_3 = 29 Således løser vi længden af siderne, vi oversætter udsagn i det givne til ligningsformular. "Længden af den første side er to gange længden af den anden side" For at løse dette tildeler vi en tilfældig variabel til enten s_1 eller s_2. For dette eksempel vil jeg lade x være længden af den anden side for at undgå at have fraktioner i min ligning. så
PERIMETER af ligemæssig trapezoid ABCD er lig med 80cm. Længden af linjen AB er 4 gange større end længden af en CD-linje, som er 2/5 længden af linjen BC (eller linjerne, der er ens i længden). Hvad er området med trapezoiden?
Område med trapezium er 320 cm ^ 2. Lad trapeziet være som vist nedenfor: Her, hvis vi antager mindre side CD = a og større side AB = 4a og BC = a / (2/5) = (5a) / 2. Som sådan er BC = AD = (5a) / 2, CD = a og AB = 4a Hermed er omkredsen (5a) / 2xx2 + a + 4a = 10a Men omkredsen er 80 cm. Derfor er a = 8 cm. og to paallel sider vist som a og b er 8 cm. og 32 cm. Nu tegner vi perpendikulærer fra C og D til AB, som danner to identiske retvinklede triangler, hvis hypotenuse er 5 / 2xx8 = 20 cm. og basen er (4xx8-8) / 2 = 12 og dermed er dens højde sqrt (20 ^ 2-12 ^ 2) = sqrt (400-144) = sqrt256 =
Du har håndklæder af tre størrelser. Længden af den første er 3/4 m, hvilket udgør 3/5 af længden af den anden. Længden af det tredje håndklæde er 5/12 af summen af længderne af de første to. Hvilken del af den tredje håndklæde er den anden?
Forholdet mellem anden til tredje håndklæde længde = 75/136 Længde af første håndklæde = 3/5 m Længde af andet håndklæde = (5/3) * (3/4) = 5/4 m Summen af de to første håndklæder = 3/5 + 5/4 = 37/20 Længde af det tredje håndklæde = (5/12) * (37/20) = 136/60 = 34/15 m Forholdet mellem anden til tredje håndklæde længde = (5/4 ) / (34/15) = (5 * 15) / (34 * 4) = 75/136