Svar:
Det givne par udgør bunden, længden
Forklaring:
De hedder vertices.
Jeg kan godt lide denne, fordi vi ikke bliver fortalt, om vi får den fælles side eller basen. Lad os finde de trekanter, der gør området 36 og finde ud af, hvilke som er ensidige senere.
Ring til hjørnerne
Vi kan straks sige
Skyttelformlen giver området
Det er to parallelle linjer og ethvert punkt
Hvilke er ligemængder? Der er tre muligheder: AB er basen, BC er basen, eller AC er basen. To vil have samme kongruente trekanter, men lader dem arbejde ud:
Case AC = BC:
Det mødes
sag AB = BC:
Det er en smerte, fordi kvadraterne ikke annullerede. Lad os mødes med
Ikke noget her.
sag AB = AC:
To hjørner af en enslig trekant er på (2, 5) og (9, 4). Hvis trekantens areal er 12, hvad er længderne på trekantens sider?
Længderne af deltaets tre sider er farve (blå) (7.0711, 4.901, 4.901) Længde a = sqrt ((9-2) ^ 2 + (4-5) ^ 2) = sqrt50 = 7.0711 Område af Delta = 12 :. h = (Areal) / (a / 2) = 12 / (7.0711/2) = 12 / 3.5355 = 3.3941 side b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((3.5355) ^ 2 + (3.3941) ^ 2) b = 4.901 Da trekanten er ensløs, er tredje side også = b = 4.901
To hjørner af en enslig trekant er på (3, 9) og (2, 5). Hvis trekantens areal er 4, hvad er længderne på trekantens sider?
Længderne af trekantens sider er 2.83, 2.83 og 4.12. Bundens længde er b = sqrt ((3-2) ^ 2 + (9-5) ^ 2) = sqrt (1 ^ 2 + 4 ^ 2) = sqrt17 Lad højden af trekanten være = h Området er A = 1/2 * b * h 1/2 * sqrt17 * h = 4 h = (4 * 2) / (sqrt17) = 8 / sqrt17 Lad længden af den anden og tredje side af trekanten er = c Således er c ^ 2 = h ^ 2 + (b / 2) ^ 2 c ^ 2 = (8 / sqrt17) ^ 2 + (sqrt17 / 2) ^ 2 c ^ 2 = 3,76 + 4,25 = 8,01 c = sqrt (8,01) = 2,83
To hjørner af en enslig trekant er på (3, 9) og (6, 7). Hvis trekantens areal er 4, hvad er længderne på trekantens sider?
2,86, 2,86 og 3,6 Brug lignelsen til en linje for at finde længden af den kendte side, så bruger vi den som den vilkårlig base af trekanten med området for at finde det andet punkt. Afstanden mellem de endelige punktsteder kan beregnes ud fra afstandsformlen for kartesiske koordinatsystemer: d = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1) ^ 2) d = sqrt ((6-3) ^ 2 + (7-9) ^ 2); d = sqrt ((3) ^ 2 + (- 2) ^ 2); d = sqrt ((9 + 4) d = sqrt (13) = 3,6 Triangleområde = ½ b * h 4 = ½ * 3,6 * h; h = 2,22 Dette er afstanden til det tredje punkt fra midtpunktet på den anden punkter, vinkelret på linj