Svar:
12 og 14
-12 og -14
Forklaring:
lad det første lige heltal være
Så det andet fortløbende lige heltal vil være
Da det givne produkt er 168, vil ligningen være som følger:
Din ligning er af formularen
Find diskriminationen
Siden
Begge rødder opfylder betingelsen at være lige heltal
Første mulighed: to på hinanden følgende positive heltal
12 og 14
Anden mulighed: to på hinanden følgende negative heltal
-12 og -14
Produktet af fire på hinanden følgende heltal er deleligt med 13 og 31? hvad er de fire på hinanden følgende heltal, hvis produktet er så lille som muligt?
Da vi har brug for fire på hinanden følgende heltal, vil vi have brug for LCM som en af dem. LCM = 13 * 31 = 403 Hvis vi ønsker at produktet skal være så lille som muligt, ville vi have de andre tre heltal 400, 401, 402. Derfor er de fire på hinanden følgende heltal 400, 401, 402, 403. Forhåbentlig hjælper!
Produktet af to på hinanden følgende heltal er 47 mere end det næste på hinanden følgende heltal. Hvad er de to heltal?
-7 og -6 ELLER 7 og 8 Lad heltalene være x, x + 1 og x + 2. Så x (x + 1) - 47 = x + 2 Løsning for x: x ^ 2 + x - 47 = x + 2 x ^ 2 - 49 = 0 (x + 7) (x - 7) = 0 x = -7 og 7 Kontrollerer tilbage, begge resultater arbejder, så de to heltal er enten -7 og -6 eller 7 og 8. Forhåbentlig hjælper!
Hvad er det midterste heltal af 3 på hinanden følgende positive lige heltal, hvis produktet af de mindre to heltal er 2 mindre end 5 gange det største heltal?
8 '3 på hinanden følgende positive lige heltal' kan skrives som x; x + 2; x + 4 Produktet af de to mindre heltal er x * (x + 2) '5 gange det største heltal' er 5 * (x +4):. x * (x + 2) = 5 * (x + 4) - 2 x ^ 2 + 2x = 5x + 20 - 2 x ^ 2 -3x-18 = 0 (x-6) kan udelukke det negative resultat, fordi heltalene angives at være positive, så x = 6 Det midterste heltal er derfor 8