Svar:
Forklaring:
Vi udvider med forskellen og summen vinkel formler og se, hvor vi er.
Det er 45/45/90 i den første og fjerde kvadrant,
Kontrollere:
Vis at cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jeg er lidt forvirret, hvis jeg laver Cos²4π / 10 = cos² (π-6π / 10) og cos²9π / 10 = cos² (π-π / 10), bliver den negativ som cos (180 ° -theta) = - costheta in den anden kvadrant. Hvordan går jeg med at bevise spørgsmålet?
Se nedenfor. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Hvordan løser du følgende ligning 2 cos x - 1 = 0 i intervallet [0, 2pi]?
Løsningerne er x = pi / 3 og x = 5pi / 3 2cos (x) -1 = 0 Slip af -1 fra venstre side 2cos (x) = 1 cos (x) = 1/2 Brug enhedens cirkel Find værdi af x, hvor cos (x) = 1/2. Det er klart, at for x = pi / 3 og x = 5pi / 3. cos (x) = 1/2. så løsningerne er x = pi / 3 og x = 5pi / 3 #
Løs for specifik variabel h S = 2pi * rh + 2pi * r ^ 2?
H = S / (pir) -r> "en måde er som vist. Der er andre tilgange" S = 2pirh + 2pir ^ 2 "vend ligningen for at placere h på venstre side" 2pirh + 2pir ^ 2 = S "tage uddelegere begge sider med "2pir (annuller (2pir) (h + r)) / annuller (2pir) = S / (2pir)" 2pir 2pir (h + r) = S " rArrh + r = S / (2pir) "subtract r fra begge sider" hcancel (+ r) annullere (-r) = S / (2pir) -r rArrh = S / (2pir) -r