Svar:
271.299
Forklaring:
vinklen mellem A og B =
I en retvinklet trekant er tanningen af en vinkel =
Udbytter i de kendte værdier
Omarrangere og forenkle
Området af en trekant =
Udbytter i værdierne
En trekant har siderne A, B og C. Vinklen mellem siderne A og B er (7pi) / 12. Hvis side C har en længde på 16 og vinklen mellem siderne B og C er pi / 12, hvad er længden af side A?
A = 4.28699 enheder Lad mig først betegne siderne med små bogstaver a, b og c Lad mig nævne vinklen mellem side "a" og "b" med / _ C, vinkel mellem side "b" og "c" / " _ A og vinkel mellem side "c" og "a" med / _ B. Bemærk: - tegnet / _ læses som "vinkel". Vi er givet med / _C og / _A. Det er givet den side c = 16. Ved anvendelse af Sines lov (Sin / _A) / a = (sin / _C) / c indebærer Sin (pi / 12) / a = sin ((7pi) / 12) / 16 betyder 0,2558 / a = 0,9659 / 16 betyder 0,2558 / a = 0,06036875 betyder a = 0,25588 / 0,0603687
En trekant har siderne A, B og C. Vinklen mellem siderne A og B er (5pi) / 12 og vinklen mellem siderne B og C er pi / 12. Hvis side B har en længde på 4, hvad er trekantens område?
Se nedenfor Vinklen mellem siderne A og B = 5pi / 12 Vinklen mellem siderne C og B = pi / 12 Vinklen mellem siderne C og A = pi -5pi / 12-pi / 12 = pi / 2 dermed trekanten er retvinklet en og B er dens hypotenuse. Derfor er side A = Bsin (pi / 12) = 4sin (pi / 12) side C = Bcos (pi / 12) = 4cos (pi / 12) Så område = 1 / 2ACsin (pi / 2) = 1/2 * 4sin (pi / 12) * 4cos (pi / 12) = 4 * 2sin (pi / 12) * cos (pi / 12) = 4 * sin (2pi / 12) = 4 * sin (pi / 6) = 4 * 1 / 2 = 2 kvm enhed
En trekant har siderne A, B og C. Vinklen mellem siderne A og B er pi / 3. Hvis side C har en længde på 12, og vinklen mellem siderne B og C er pi / 12, hvad er længden af side A?
2 sqrt (6) (sqrt (3) -1) Forudsat vinkler modsat sider A, B og C er henholdsvis / _A, / _B og / _C. Så / _C = pi / 3 og / _A = pi / 12 Brug Sinine Rule (Sin / _A) / A = (Sin / _B) / B = (Sin / _C) / C vi har, (Sin / _A) / A = (Sin / _C) / C (Sin (pi / 12)) / A = (Sin (pi / 3)) / 12 A = (sqrt (3) -1) / (2 sqrt (2)) * 12 * 1 / (sqrt3 / 2) eller, A = 2 sqrt (6) (sqrt (3) -1) eller, A ~ ~ 3.586