derfor
Og retning er givet som:
Positionen af et objekt, som bevæger sig langs en linje, er givet ved p (t) = 2t - 2sin ((pi) / 8t) + 2. Hvad er objektets hastighed ved t = 12?
2,0 "m" / "s" Vi bliver bedt om at finde den øjeblikkelige x-hastighed v_x på et tidspunkt t = 12 givet ligningen for, hvordan dens position varierer med tiden. Ligningen for øjeblikkelig x-hastighed kan afledes fra positionsligningen; hastighed er derivatet af position i forhold til tid: v_x = dx / dt Derivatet af en konstant er 0, og derivatet af t ^ n er nt ^ (n-1). Også derivatet af synd (at) er acos (økse). Ved hjælp af disse formler er differentieringen af positionsligningen v_x (t) = 2 - pi / 4 cos (pi / 8 t) Lad os nu tilslutte tiden t = 12 til ligningen for at fin
Positionen af et objekt, der bevæger sig langs en linje, er givet ved p (t) = 2t - 2tsin ((pi) / 4t) + 2. Hvad er objektets hastighed ved t = 7?
"speed" = 8,94 "m / s" Vi bliver bedt om at finde et objekts hastighed med en kendt positionsligning (endimensionel). For at gøre dette skal vi finde objektets hastighed som en funktion af tiden ved at differentiere positionens ligning: v (t) = d / (dt) [2t - 2tsin (pi / 4t) + 2] = 2 - pi / 2tcos (pi / 4t) Hastigheden ved t = 7 "s" findes ved v (7) = 2 - pi / 2 (7) cos (pi / 4 (7)) = farve (rød) farve (rød) ("m / s" (forudsat position er i meter og tid i sekunder) Objektets hastighed er størrelsen (absolutværdi) af dette, hvilket er "speed" = | -8.9
Placeringen af et objekt, som bevæger sig langs en linje, er givet ved p (t) = 2t ^ 3 - 2t ^ 2 +1. Hvad er objektets hastighed ved t = 4?
V (t) = d / (dt) (2t ^ 3-2t ^ 2 + 1) v (t) = 6t ^ 2- 4t + 0 "hvis" "t = 4" -> "" v (4) = 6 * 4²-4 * 4 = 96-16 = 80 v (4) = 80