Svar:
Vertex er på
Forklaring:
Givet:
Spidsformen for ligningen af en parabola er:
hvor "a" er koefficienten af
Skriv (x + 3) i den givne ligning som (x -3):
Opdel begge sider med 2:
Tilføj 2 til begge sider:
Vertex er på
Symmetriaksen for en funktion i form f (x) = x ^ 2 + 4x - 5 er x = -2. Hvad er koordinaterne for toppunktet i grafen?
Vetex -> (x, y) = (- 2, -9) Da x _ ("vertex") = - 2 Indstil y = f (x) = x ^ 2 + 4x-5 Stedfortræder en x farve (grøn) (y = farve (rød) (x) ^ 2 + 4farve (rød) (x) -5farve (hvid) ("dddd") -> farve (hvid) ("dddd") y = farve (rød) (- 2)) ^ 2 + 4farve (rød) ((- 2)) - 5 farve (grøn) (farve (hvid) ("ddddddddddddddddd") -> farve (hvid) = + 4farve (hvid) ("dddd") - 8farve (hvid) ("dd") - 5 y _ ("vertex") = - 9 Vetex -> (x, y) = (- 2, -9)
Hvad er symmetriaksen og toppunktet for grafen f (x) = 2x ^ 2 + x - 3?
Symmetriaksen er x = -1 / 4 Spidsen er = (- 1/4, -25 / 8) Vi gennemfører firkanterne f (x) = 2x ^ 2 + x-3 = 2 (x ^ 2 + 1 / 2x) -3 = 2 (x ^ 2 + 1 / 2x + 1/16) -3-2 / 16 = 2 (x + 1/4) ^ 2-25 / 8 Symmetriaksen er x = -1 / 4 Spidsen er = (- 1/4, -25 / 8) graf {2x ^ 2 + x-3 [-7,9, 7,9, -3,95, 3,95]}
Skitse grafen for y = 8 ^ x med angivelse af koordinaterne for punkter, hvor grafen krydser koordinatakserne. Beskriv fuldstændig transformationen, som transformerer grafen Y = 8 ^ x til grafen y = 8 ^ (x + 1)?
Se nedenunder. Eksponentielle funktioner uden vertikal transformation krydser aldrig x-aksen. Som sådan vil y = 8 ^ x ikke have x-aflytninger. Det vil have en y-intercept på y (0) = 8 ^ 0 = 1. Grafen skal ligne følgende. Grafen af y = 8 ^ (x + 1) er grafen for y = 8 ^ x flyttet 1 enhed til venstre, så det er y- aflytning ligger nu ved (0, 8). Du kan også se, at y (-1) = 1. graf {8 ^ (x + 1) [-10, 10, -5, 5]} Forhåbentlig hjælper dette!