En afbalanceret håndtag har to vægte på den, den første med masse 7 kg og den anden med masse 4 kg. Hvis den første vægt er 3 m fra vinklen, hvor langt er den anden vægt fra vinklen?
Vægt 2 er et øjeblik på 21 (7 kg xx3m) Vægt 2 skal også have et øjeblik på 21 B) 21/4 = 5,25 m Strengt taget skal kg omdannes til Newton i både A og B, fordi Moments måles i Newton Meters, men Gravitational Constants vil annullere ud i B, så de blev udeladt for enkelhedens skyld
En afbalanceret håndtag har to vægte på den, den første med masse 8 kg og den anden med masse 24 kg. Hvis den første vægt er 2 m fra vinklen, hvor langt er den anden vægt fra vinklen?
Da håndtaget er afbalanceret, er summen af drejningsmomenter lig med 0 Svar er: r_2 = 0.bar (66) m Da armen er afbalanceret er summen af drejningsmomenter lig med 0: Στ = 0 Om tegnet, naturligvis for Håndtaget skal afbalanceres, hvis den første vægt har tendens til at dreje objektet med et bestemt drejningsmoment, den anden vægt vil have modsat drejningsmoment. Lad masserne være: m_1 = 8kg m_2 = 24kg τ_ (m_1) -τ_ (m_2) = 0 τ_ (m_1) = τ_ (m_2) F_1 * r_1 = F_2 * r_2 m_1 * annullere (g) * r_1 = m_2 * annullere (g) * r_2 r_2 = m_1 / m_2 * r_1 r_2 = 8/24 * 2 annullere (kg) / (kg)) * m r_2 = 2/3 m
En afbalanceret håndtag har to vægte på den, den første med masse 16 kg og den anden med masse 3 kg. Hvis den første vægt er 7 m fra vinklen, hvor langt er den anden vægt fra vinklen?
112 / 3m Nå, hvis armen er afbalanceret, skal drejningsmomentet (eller kraftens øjeblikke) være det samme. Derfor er 16 * 7m = 3 * x => x = 112 / 3m hvorfor kan jeg ikke få nogle fine tal i problemet, så i hvert fald resultaterne ser godt ud?