Svar:
Kæderegel:
Forklaring:
I differential beregning bruger vi Kæderegel når vi har en sammensat funktion. Det hedder:
Derivatet vil være lig med derivatet af den ydre funktion med hensyn til indersiden, gange derivatet af den indvendige funktion. Lad os se, hvad der ligner matematisk:
Kæderegel:
Lad os sige, at vi har den sammensatte funktion
Så derivatet vil være lig med
Vi skal bare finde vores to funktioner, finde deres derivater og input til Chain Rule udtryk.
Håber dette hjælper!
Reuben sælger beaded halskæder. Hver stor halskæde sælger til 5,10 dollar, og hver lille halskæde sælger til 4,60 dollar. Hvor meget vil han tjene på at sælge 1 stor halskæde og 7 små halskæder?
Reuben vil tjene $ 37.30 fra at sælge 1 stort og 7 små halskæder. Lad os lave en formel til beregning af, hvor meget Reuben vil tjene på at sælge halskæder: Lad os først ringe, hvad han vil tjene. Så antallet af store halskæder vi kan ringe l og til store halskæder han sælger, vil han lave l xx $ 5,10. Også antallet af små halskæder vi kan ringe s og til små halskæder han sælger, vil han lave s xx $ 45.60. Vi kan sige dette helt for at få vores formel: e = (l xx $ 5,10) + (s xx $ 4,60) I problemet bliver vi bedt om at beregne for Reub
Ron har en taske indeholdende 3 grønne pærer og 4 røde pærer. Han vælger tilfældigt en pære og vælger derefter tilfældigt en anden pære uden udskiftning. Hvilket trædiagram viser de rigtige sandsynligheder for denne situation? Besvar valg: http://prntscr.com/ep2eth
Ja, dit svar er korrekt.
Hvis f (x) = 3x ^ 2 og g (x) = (x-9) / (x + 1) og x! = - 1, hvad ville f (g (x)) ligestilles med? g (f (x))? f ^ -1 (x)? Hvad ville domænet, rækkevidde og nul for f (x) være? Hvad ville domænet, rækkevidde og nul for g (x) være?
F (g (x)) = 3 (x-9) / (x + 1)) 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) 1 (x) = root () (x / 3) D_f = {x i RR}, R_f = {f (x) i RR; f (x)> = 0} D_g = {x i RR; x! = - 1}, R_g = {g (x) i RR; g (x)! = 1}