Svar:
Forklaring:
For at differentiere dette vil vi anvende en kæde regel:
Begynd ved at lade
Differentier nu hvert udtryk på begge sider af ligningen med respekt for
Brug af identiteten:
Husk:
Så vi kan skrive,
Hvordan finder du derivatet af Inverse trig-funktionen f (x) = arcsin (9x) + arccos (9x)?
Her gør jeg det: - Jeg vil lade nogle "" theta = arcsin (9x) "" og nogle "" alpha = arccos (9x) Så jeg får, "" sintheta = 9x "" og "" cosalpha = 9x Jeg differentierer begge implicit som dette: => (costheta) (d (theta)) / (dx) = 9 "= = (d (theta)) / (dx) = 9 / (costheta) = 9 / (sqt (1-sin ^ 2theta)) = 9 / (sqrt (1- (9x) ^ 2) - Dernæst skelner jeg cosalpha = 9x => (- sinalpha) * (d (alfa)) / = 9 / (sqt (1-cosalpha)) = - 9 / sqrt (1- (9x)) / (dx) = - 9 / 2) Samlet set "" f (x) = theta + alfa Så, f ^ ('') (x) = (d
Hvordan finder du derivatet af y = x (arcsin) (x ^ 2)?
Se svaret nedenfor:
Hvordan bruger du grænse definitionen af derivatet for at finde derivatet af y = -4x-2?
-4 Definitionen af derivat er angivet som følger: lim (h-> 0) (f (x + h) -f (x)) / h Lad os anvende ovenstående formel på den givne funktion: lim (h-> 0) (f (x + h) -f (x)) / h = lim (h-> 0) (- 4 (x + h) -2 - (- 4x-2)) / h = lim (h-> 0 ) (- 4x-4h-2 + 4x + 2) / h = lim (h-> 0) ((- 4h) / h) Forenkling ved h = lim (h-> 0) (- 4) = -4