Svar:
Jeg producerer ikke noget som resultat, men her er hvordan du skal nærme dig.
Forklaring:
derfor
Vi ved
Så hastigheden af ændring af hastighed
nu bør gennemsnitshastigheden defineres som:
Den kinetiske energi af en genstand med en masse på 1 kg ændres konstant fra 126 J til 702 J over 9 s. Hvad er impulsen på objektet ved 5 s?
Kan ikke besvares K.E. = k * t => v = sqrt (t) => int_i ^ fm dv = int_t ^ (t + 5) sqrt (k / 2m) dt / sqrt (t) Så at have en impulsens absolutte værdi, skal vi angive, hvilke 5'er vi taler om.
Et modeltog med en masse på 4 kg bevæger sig på et cirkulært spor med en radius på 3 m. Hvis togets kinetiske energi ændres fra 12 J til 48 J, med hvor meget vil den centripetale kraft, der anvendes af sporene, ændres med?
Centripetal kraftændringer fra 8N til 32N Kinetisk energi K af en genstand med masse m, der bevæger sig med en hastighed på v, er givet ved 1 / 2mv ^ 2. Når kinetisk energi øges 48/12 = 4 gange, bliver hastigheden således fordoblet. Den indledende hastighed vil blive givet ved v = sqrt (2K / m) = sqrt (2xx12 / 4) = sqrt6 og det bliver 2sqrt6 efter stigning i kinetisk energi. Når et objekt bevæger sig i en cirkulær bane med konstant hastighed, oplever det, at en centripetalkraft er givet ved F = mv ^ 2 / r, hvor: F er centripetalkraft, m er masse, v er hastighed og r er cirkel af
Et modeltog med en masse på 3 kg bevæger sig på et cirkulært spor med en radius på 1 m. Hvis togets kinetiske energi ændres fra 21 j til 36 j, ved hvor meget vil den centripetale kraft, der anvendes af sporene, ændre sig?
For at gøre det nemt kan vi finde ud af forholdet mellem kinetisk energi og centripetalkraft med de ting, vi ved: Vi kender: "K.E." = 1 / 2momega ^ 2r ^ 2 og "centripetal force" = momega ^ 2r Derfor er "K.E" = 1 / 2xx "centripetal force" xxr Bemærk, r forbliver konstant i løbet af processen. Derfor er Delta "centripetal force" = (2Delta "K.E.") / r = (2 (36-21) J) / (1m) = 30N