Svar:
Forklaring:
Vedtagende side
hvor
hvornår
Ellipse fokuserer placering er:
Nu har vi relationerne:
1)
2) Fra
3)
Løsning 1,2,3 for
og erstatning
med et område af
Højden af en trekant stiger med en hastighed på 1,5 cm / min, mens trekantenes område er stigende med en hastighed på 5 cm / min. Ved hvilken hastighed ændres bunden af trekanten, når højden er 9 cm, og området er 81 kvadrat cm?
Dette er en relateret hastighed (af forandring) type problem. De interesserede variabler er a = højde A = område, og da området af en trekant er A = 1 / 2ba, har vi brug for b = base. De givne ændringer er i enheder pr. Minut, så den (usynlige) uafhængige variabel er t = tid i minutter. Vi får: (da) / dt = 3/2 cm / min (dA) / dt = 5 cm "" ^ 2 / min Og vi bliver bedt om at finde (db) / dt når a = 9 cm og A = 81 cm "" 2 A = 1 / 2ba, der differentieres med hensyn til t, får vi: d / dt (A) = d / dt (1 / 2ba). Vi skal bruge produktreglen til højre. (dA) / dt
Basen af en trekant af et givet område varierer omvendt som højden. En trekant har en base på 18cm og en højde på 10cm. Hvordan finder du højden på en trekant med samme område og med en base på 15cm?
Højde = 12 cm Området af en trekant kan bestemmes med ligningsområdet = 1/2 * base * højde Find området for den første trekant ved at erstatte målingen af trekanten i ligningen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Lad højden af den anden trekant = x. Så området ligningen for den anden trekant = 1/2 * 15 * x Da områdene er ens, 90 = 1/2 * 15 * x gange begge sider ved 2. 180 = 15x x = 12
Hvad er breddehastigheden (i ft / sek), når højden er 10 fod, hvis højden falder i det øjeblik med en hastighed på 1 ft / sec. Et rektangel har både en skiftende højde og en skiftende bredde , men højden og bredden ændres, så rektanglet er altid 60 kvadratmeter?
Breddehastigheden med tiden (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt) ) = - 1 "ft / s" Så (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / dh) = - (60) / (h2 2) Så (dW) / (dt) = - (- (60) / (h2 2)) = (60) / (h2 2) Så når h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"