Svar:
y = -19 / 15x - 2
Forklaring:
For at bestemme den lineære funktion for dette problem er alt, hvad vi skal gøre, at bruge hældningsafskærmningsformlen.
Hældningsaflytningsformen for en lineær ligning er:
Hvor
Udveksling af de givne oplysninger:
De første og andre udtryk for en geometrisk sekvens er henholdsvis de første og tredje udtryk for en lineær sekvens. Den fjerde term af den lineære sekvens er 10, og summen af dens første fem term er 60 Find de første fem udtryk for den lineære sekvens?
{16, 14, 12, 10, 8} En typisk geometrisk sekvens kan repræsenteres som c0a, c_0a ^ 2, cdots, c_0a ^ k og en typisk aritmetisk sekvens som c0a, c_0a + Delta, c0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a som det første element for den geometriske sekvens vi har {(c_0 a ^ 2 = c_0a + 2Delta -> "Første og anden af GS er den første og tredje af en LS"), (c_0a + 3Delta = 10- > "Den fjerde term for den lineære sekvens er 10"), (5c_0a + 10Delta = 60 -> "Summen af dens første fem sigt er 60"):} Løsning for c_0, a, Delta opnår vi c_0 = 64/3 , a = 3/4
Lad f være lineær funktion sådan at f (-1) = - 2 og f (1) = 4.Find en ligning for den lineære funktion f og derefter grafer y = f (x) på koordinatnettet?
Y = 3x + 1 Da f er en lineær funktion, dvs. en linje, sådan at f (-1) = - 2 og f (1) = 4 betyder det, at det går gennem (-1, -2) og (1,4 ) Bemærk, at kun en linje kan passere gennem givet to punkter, og hvis punkterne er (x_1, y_1) og (x_2, y_2), er ligningen (x-x_1) / (x_2-x_1) = (y-y_1) / (y_2-y_1) og dermed ligning for linje, der passerer gennem (-1, -2) og (1,4) er (x - (- 1)) / (1 - (- 1)) = (y - (- 2 )) / (4 - (- 2)) eller (x + 1) / 2 = (y + 2) / 6 og multiplicere med 6 eller 3 (x + 1) = y + 2 eller y = 3x + 1
Når en 40-N kraft parallelt med hældningen og rettet op til hældningen påføres en kasse på en friktionsfri hældning, der er 30 ° over vandret, er accelerationen af kassen 2,0 m / s ^ 2 op ad hældningen . Kasseens masse er?
M ~ = 5,8 kg Netto kraften op hældningen er givet af F_ "net" = m * a F_ "net" er summen af 40 N kraften op i hældningen og komponent af objektets vægt, m * g, ned hældningen. F_ "net" = 40 N - m * g * sin30 = m * 2 m / s ^ 2 Løsning for m, m * 2 m / s ^ 2 + m * 9,8 m / s ^ 2 * sin30 = 40 N m * (2 m / s ^ 2 + 9,8 m / s ^ 2 * sin30) = 40 Nm * (6,9 m / s ^ 2) = 40 Nm = (40 N) / (6,9 m / s ^ 2) Newton svarer til kg * m / s ^ 2. (Se F = ma for at bekræfte dette.) M = (40 kg * annuller (m / s ^ 2)) / (4,49 afbrydelse (m / s ^ 2)) = 5,8 kg Jeg håber det hjælp