Linje L har ligning 2x-3y = 5. Linje M passerer gennem punktet (3, -10) og er parallelt med linje L. Hvordan bestemmer du ligningen for linje M?
Se en løsningsproces nedenfor: Linje L er i standard lineær form. Standardformen for en lineær ligning er: farve (rød) (A) x + farve (blå) (B) y = farve (grøn) (C) Hvor, hvis det er muligt, farve (rød) (A), farve (blå) (B) og farve (grøn) (C) er heltal, og A er ikke-negativ, og A, B og C har ingen fællesfaktorer ud over 1 farve (rød) (2) x -farve (3) y = farve (grøn) (5) Hældningen af en ligning i standardform er: m = -farve (rød) (A) / farve (blå) (B) Udbytter værdierne fra ligningen til Hældningsformlen giver: m = farve (rød) (- 2)
Linje n passerer gennem punkter (6,5) og (0, 1). Hvad er y-afsnit af linje k, hvis linie k er vinkelret på linje n og passerer gennem punktet (2,4)?
7 er y-afsnit af linje k Først, lad os finde hældningen for linje n. (1-5) / (0-6) (-4) / - 6 2/3 = m Hældningen af linje n er 2/3. Det betyder, at hældningen af linje k, som er vinkelret på linje n, er den negative reciprokale på 2/3 eller -3/2. Så ligningen vi har hidtil er: y = (- 3/2) x + b For at beregne b eller y-interceptet, skal du bare stikke ind (2,4) i ligningen. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Så y-afsnit er 7
Hvad er ligningen af en linje, der er vinkelret på en linje med en hældning på 4 og har et y-afsnit på 5?
Y = -1 / 4 + 5 Når en linje har en skråning m, er den vinkelrette hældning den negative reciprokse -1 / m. Den vinkelrette linje har ligningen y = -1 / 4 + 5.