Svar:
Forklaring:
Pythagoras sætning fortæller os, at firkanten af hypotenusens længde (
Det er:
# c ^ 2 = a ^ 2 + b ^ 2 #
Så i vores eksempel:
# c ^ 2 = farve (blå) (20) ^ 2 + farve (blå) (21) ^ 2 = 400 + 441 = 841 = farve (blå) (29) ^ 2 #
Derfor:
#c = 29 #
Pythagoras 'formel svarer til:
#c = sqrt (a ^ 2 + b ^ 2) #
og:
#a = sqrt (c ^ 2-b ^ 2) #
Ved hjælp af pythagorasetningen, hvordan løser du for den manglende side givet a = 10 og b = 20?
Se en løsningsproces nedenfor: Pythagorasetningen angiver, for en rigtig trekant: c ^ 2 = a ^ 2 + b ^ 2 At erstatte a og b og løse for c giver: c ^ 2 = 10 ^ 2 + 20 ^ 2 c ^ 2 = 100 + 400 c ^ 2 = 500 sqrt (c ^ 2) = sqrt (500) c = sqrt (100 * 5) c = sqrt (100) sqrt (5) c = 10sqrt
Ved hjælp af pythagorasetningen, hvordan løser du for den manglende side givet a = 15 og b = 16?
C = sqrt {481} Ifølge Pythagoras sætning: a ^ {2} + b ^ {2} = c ^ {2} (a og b repræsenterer benene af en ret trekant og c repræsenterer hypotenusen) Derfor kan vi erstatte og forenkle: 15 ^ {2} + 16 ^ {2} = c ^ {2} 225 + 256 = c ^ {2} 481 = c ^ {2} Så tag kvadratroden af begge sider: sqrt {481} = c
Ved hjælp af pythagorasetningen, hvordan løser du for den manglende side givet a = 14 og b = 13?
C = sqrt (a ^ 2 + b ^ 2) = sqrt (14 ^ 2 + 13 ^ 2) = sqrt (365) ~ = 19.1 Den pythagoriske sætning gælder for retvinkeltriangler, hvor siderne a og b er de, der krydser i rette vinkel. Den tredje side, hypotenusen, er da c I vores eksempel ved vi at a = 14 og b = 13, så vi kan bruge ligningen til at løse for den ukendte side c: c ^ 2 = a ^ 2 + b ^ 2 eller c = sqrt (a ^ 2 + b ^ 2) = sqrt (14 ^ 2 + 13 ^ 2) = sqrt (365) ~ = 19,1