Formlen for symmetriaksen er angivet som
i den kvadratiske ligning
I denne ligning er b-værdien -11 og a-værdien er 6
Således er symmetriaksen
Nu fandt vi den vandrette linie, vi skal finde det sted, hvor dette horisontale svarer til ligningen, fordi det er her vinklen er.
Godt for at finde det, vi bare plugge ind
Ændre nævneren, så alle dele har den samme
Så vores vinkel er
Symmetriaksen for en funktion i form f (x) = x ^ 2 + 4x - 5 er x = -2. Hvad er koordinaterne for toppunktet i grafen?
Vetex -> (x, y) = (- 2, -9) Da x _ ("vertex") = - 2 Indstil y = f (x) = x ^ 2 + 4x-5 Stedfortræder en x farve (grøn) (y = farve (rød) (x) ^ 2 + 4farve (rød) (x) -5farve (hvid) ("dddd") -> farve (hvid) ("dddd") y = farve (rød) (- 2)) ^ 2 + 4farve (rød) ((- 2)) - 5 farve (grøn) (farve (hvid) ("ddddddddddddddddd") -> farve (hvid) = + 4farve (hvid) ("dddd") - 8farve (hvid) ("dd") - 5 y _ ("vertex") = - 9 Vetex -> (x, y) = (- 2, -9)
Hvad er symmetriaksen og toppunktet for grafen 2 (y - 2) = (x + 3) ^ 2?
Spidsen er ved (-3, 2) og symmetriaksen er x = -3 Givet: 2 (y - 2) = (x + 3) ^ 2 Spidsformen for ligningen af en parabola er: y = a (x - h) ^ 2 + k hvor "a" er koefficienten for x ^ 2 termen, og (h, k) er vertexet. Skriv (x + 3) i den givne ligning som (x -3): 2 (y - 2) = (x - -3) ^ 2 Opdel begge sider med 2: y - 2 = 1/2 (x - -3) ^ 2 Tilføj 2 til begge sider: y = 1/2 (x -3) ^ 2 + 2 Spidsen er ved (-3, 2) og symmetriaksen er x = -3
Skitse grafen for y = 8 ^ x med angivelse af koordinaterne for punkter, hvor grafen krydser koordinatakserne. Beskriv fuldstændig transformationen, som transformerer grafen Y = 8 ^ x til grafen y = 8 ^ (x + 1)?
Se nedenunder. Eksponentielle funktioner uden vertikal transformation krydser aldrig x-aksen. Som sådan vil y = 8 ^ x ikke have x-aflytninger. Det vil have en y-intercept på y (0) = 8 ^ 0 = 1. Grafen skal ligne følgende. Grafen af y = 8 ^ (x + 1) er grafen for y = 8 ^ x flyttet 1 enhed til venstre, så det er y- aflytning ligger nu ved (0, 8). Du kan også se, at y (-1) = 1. graf {8 ^ (x + 1) [-10, 10, -5, 5]} Forhåbentlig hjælper dette!