Ifølge Newtons anden lov om bevægelse er accelerationen af et legeme direkte proportional med den kraft, der virker på kroppen og omvendt proportional med dens masse. Formlen for denne lov er
Kendt / Ukendt:
ligning:
Opløsning:
Vand lækker ud af en inverteret konisk tank med en hastighed på 10.000 cm3 / min samtidig med at vandet pumpes i tanken med konstant hastighed Hvis tanken har en højde på 6m og diameteren øverst er 4m og hvis vandstanden stiger med en hastighed på 20 cm / min, når vandets højde er 2m, hvordan finder du den hastighed, hvormed vandet pumpes i tanken?
Lad V være vandmængden i tanken, i cm ^ 3; lad h være dybden / højden af vandet, i cm; og lad r være radius af overflade af vandet (ovenpå), i cm. Da tanken er en inverteret kegle, er det også vandets masse. Da tanken har en højde på 6 m og en radius på toppen af 2 m, betyder lignende trekanter at frac {h} {r} = frac {6} {2} = 3 således at h = 3r. Volumenet af den inverterede kegle vand er så V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Differentier nu begge sider med hensyn til tid t (i minutter) for at få frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} (
Et objekt bevæger sig i en cirkelbane med konstant hastighed. Hvilken erklæring om objektet er korrekt? A Det har ændret kinetisk energi. B Det har ændret momentum. C Det har konstant hastighed. D Det accelererer ikke.
B kinetisk energi afhænger af hastigheden i.e 1/2 mv ^ 2 (hvor m er dens masse og v er hastighed) Nu, hvis hastigheden forbliver konstant, ændres kinetisk energi ikke. Som hastighed er en vektormængde, mens den bevæger sig i en cirkulær vej, selvom dens størrelse er fast, men hastighedsændringen ændres, forbliver hastigheden ikke konstant. Nu er momentum også en vektormængde udtrykt som m vec v, så momentumændringer ændres som vec v ændringer. Nu, da hastigheden ikke er konstant, skal partiklen accelerere som a = (dv) / (dt)
En kvinde på en cykel accelererer fra hvile med konstant hastighed i 10 sekunder, indtil cyklen bevæger sig ved 20m / s. Hun opretholder denne hastighed i 30 sekunder, så bremserne skal decelerere med konstant hastighed. Cyklen kommer til ophør 5 sekunder senere.hjælp?
"Del a) acceleration" a = -4 m / s ^ 2 "del b) den samlede tilbagelagte distance er" 750 mv = v_0 + ved "Del a) I de sidste 5 sekunder har vi:" 0 = 20 + 5 a = > a = -4 m / s ^ 2 "del b)" "I de første 10 sekunder har vi:" 20 = 0 + 10 a => a = 2 m / s ^ 2 x = v_0 t + ved ^ 2 / 2 => x = 0 t + 2 * 10 ^ 2/2 = 100 m "I de næste 30 sekunder har vi konstant hastighed:" x = vt => x = 20 * 30 = 600 m " have: "x = 20 * 5 - 4 * 5 ^ 2/2 = 50 m =>" Total afstand "x = 100 + 600 + 50 = 750 m" Bemærkning: "" 20 m / s