Tja, det er ikke sagt, at ved hvilken vej objektet nåede sit endepunkt fra det første punkt af rejsen.
Afstanden er den direkte vejlængde, som vi skal vide for at beregne hastigheden.
Lad os overveje, at objektet gik her i en lige linje, så forskydningen = afstanden
dvs.
Så hastighed = afstand / tid =
Hvad er hastigheden på et objekt, der rejser fra (1, -2, 3) til (-5, 6, 7) over 4 s?
2.693m // s Afstanden mellem de 2 givne tredimensionale punkter kan findes fra den normale euklidiske metriske værdi i RR ^ 3 som følger: x = d ((1,2,3); (- 5,6,7 )) = sqrt ((1 - (- 5)) ^ 2 + (- 2-6) ^ 2 + (3-7) ^ 2) = sqrt (36 + 64 + 16 = sqrt116m, (Forudsat at SI enhederne er Anvendes) Derfor vil objektets hastighed pr. definition være hastigheden for ændring i afstand og givet af v = x / t = sqrt116 / 4 = 2.693m // s.
Hvad er hastigheden på et objekt, der rejser fra (-1, 7,2) til (-3, -1,0) over 2 s?
4.24 "enheder / s" Afstanden mellem de 2 punkter er angivet ved: d = sqrt ((- 1 + 3) ^ 2 + (7 + 1) ^ 2 + (2-0) ^ 2: .d = sqrt 2 ^ 2 + 8 ^ 2 + 2 ^ 2) d = sqrt (72) = 8,48 "enheder": .v = d / t = 8,48 / 2 = 4,24 "enheder / s"
Hvad er hastigheden af et objekt, der rejser fra (-1, 7,2) til (-3, 4,7) over 2 s?
V = sqrt 10 "afstanden mellem to punkter er angivet som:" x = sqrt (Delta x ^ 2 + Delta y ^ 2 + Delta z ^ 2 Delta x = x_2-x_1 = -3 + 1 = -2 Delta y = y_2 -y_1 = 4-7 = -3 Delta z = z_2-z_1 = -3-2 = -5 x = sqrt ((- 2) ^ 2 + (-3) ^ 2 + (- 5) ^ 2) x = sqrt (4 + 9 + 25) x = sqrt40 v = x / tv = sqrt 40/2 v = sqrt (4 * 10) / 2 = 2 * sqrt 10/2 v = sqrt 10