Svar:
Domæne:
Rækkevidde:
Forklaring:
Det domæne af funktionen vil indeholde alle de værdier, som
I dette tilfælde fortæller den kendsgerning, at du har at gøre med en kvadratrod, at udtrykket under kvadratroder skal være positiv. Det er tilfældet, fordi når du arbejder med reelle tal, du kan kun tage kvadratroden af a positivt tal.
Det betyder at du skal have
# (x + 5) (x - 5)> = 0 #
Nu ved du det for
# (x + 5) (x - 5) = 0 #
For at bestemme værdierne for
# (x + 5) (x-5)> 0 #
du skal se på to mulige scenarier.
# x + 5> 0 "" ul (og) "" x-5> 0 # I dette tilfælde skal du have
#x + 5> 0 indebærer x> - 5 # og
# x - 5> 0 indebærer x> 5 # Løsningsintervallet vil være
# (- 5, + oo) nn (5, + oo) = (5, + oo) #
#x + 5 <0 "" ul (og) "" x- 5 <0 # Denne gang skal du have
#x + 5 <0 indebærer x <-5 # og
# x - 5 <0 indebærer x <5 # Løsningsintervallet vil være
# (- oo, - 5) nn (-oo, 5) = (-oo, - 5) #
Du kan således sige at domænet af funktionen vil være--lade være med Glem det
# "domæne:" farve (mørkegrøn) (ul (farve (sort) (x i (-oo, - 5 uu 5, + oo) #
For rækkevidden af funktionen skal du finde de værdier, som
Du ved, at for reelle tal, vil kvadratroden af et positivt tal producere en positivt tal, så du kan sige det
#y> = 0 "" (AA) farve (hvid) (.) x i (-oo, -5 uu 5, + oo) #
Nu ved du det, hvornår
#y = sqrt ((- 5 + 5) (- 5 - 5)) = 0 "" og "" y = sqrt ((5 + 5) (5 - 5)) = 0 #
Desuden for hver værdi af
#y> = 0 #
Dette betyder at rækkevidden af funktionen vil være
# "interval:" farve (mørkegrøn) (ul (farve (sort) (y i (-oo "," + oo)))
graf {sqrt ((x + 5) (x-5)) -20, 20, -10, 10}
Domænet for f (x) er sæt af alle reelle værdier undtagen 7, og domænet for g (x) er sætet af alle reelle værdier bortset fra -3. Hvad er domænet for (g * f) (x)?
Alle reelle tal undtagen 7 og -3, når du multiplicerer to funktioner, hvad laver vi? vi tager f (x) -værdien og multiplicerer den med g (x) -værdien, hvor x skal være det samme. Men begge funktioner har begrænsninger, 7 og -3, så produktet af de to funktioner skal have * begge * begrænsninger. Normalt når de har funktioner på funktioner, hvis de tidligere funktioner (f (x) og g (x)) havde begrænsninger, bliver de altid taget som en del af den nye begrænsning af den nye funktion eller deres funktion. Du kan også visualisere dette ved at lave to rationelle funktione
Hvad er domænet og rækkevidden af 3x-2 / 5x + 1 og domænet og rækkevidden af invers af funktionen?
Domæne er alle reals undtagen -1/5, hvilket er området for den inverse. Område er alle reals undtagen 3/5, hvilket er domænet for den inverse. f (x) = (3x-2) / (5x + 1) er defineret og reelle værdier for alle x undtagen -1/5, så det er domænet af f og rækkevidden af f ^ -1 Indstilling y = (3x -2) / (5x + 1) og opløsning for x udbytter 5xy + y = 3x-2, så 5xy-3x = -y-2 og derfor (5y-3) x = -y-2, så endelig x = (- y-2) / (5y-3). Vi ser at y! = 3/5. Så rækkevidden af f er alle realiteter undtagen 3/5. Dette er også domænet af f ^ -1.
Hvad er domænet for den kombinerede funktion h (x) = f (x) - g (x), hvis domænet af f (x) = (4,4,5] og domænet af g (x) er [4, 4,5 )?
Domænet er D_ {f-g} = (4,4,5). Se forklaring. (f-g) (x) kan kun beregnes for de x, for hvilke både f og g er defineret. Så vi kan skrive det: D_ {f-g} = D_fnnD_g Her har vi D_ {f-g} = (4,4,5] nn [4,4,5) = (4,4,5)