Svar:
Til graf
Forklaring:
Den givne ligning
Sæt
Vi har y-interceptet på
~~~~~~~~~~~~~~~~~~~~~~~~~
Indstil nu
Vi har x-intercept på
Andre punkter er
Siden grafen af
Hvis tanx = -1/3, cos> 0, så hvordan finder du tan2x?
Tan 2x = (2tanx) / (1 - tan ^ 2x) Denne identitet er praktisk, du vil måske huske det. = (2 (-1/3)) / (1 - 1/9) = (- 2/3) / (8/9) = -2/3 (9/8) = -3/4
Bevis at ?? (Sinx + Sin2x + Sin3x) / (cosx + cos2x + cos3x) = tan2x
LHS = (sinx + sin2x + sin3x) / (cosx + cos2x + cos3x) = (2sin ((3x + x) / 2) * cos ((3x-x) / 2) + sin2x) / (2cos ((3x + x) / 2) * cos (3x-x) / 2) + cos2x = (2sin2x * cosx + sin2x) / (2cos2x * cosx + cos2x) = (sin2xcancel ((+2cosx))) (cos2xcancel ( 1 + 2cosx))) = tan2x = RHS
Løs 1 / (tan2x-tanx) -1 / (cot2x-cotx) = 1?
1 / (tan2x-tanx) -1 / (cot2x-cotx) = 1 => 1 / (tan2x-tanx) -1 / (1 / (tan2x) -1 / tanx) = 1 => 1 / (tan2x-tanx ) + 1 / (1 / (tanx) -1 / (tan2x)) = 1 => 1 / (tan2x-tanx) + (tanxtan2x) / (tan2x-tanx) = 1 => (1 + tanxtan2x) / (tan2x -tanx) = 1 => 1 / tan (2x-x) = 1 => tan (x) = 1 = tan (pi / 4) => x = npi + pi / 4