Svar:
Forklaring:
En parabola er et punkts punkt, som bevæger sig således, at afstanden fra en given linje kaldet directrix og et givet punkt kaldet fokus er altid ens.
Nu afstanden mellem to pints
Kommer til parabola med directrix
og dens afstand fra
og som de to er ens, ville ligning af parabola være
eller
eller
eller
eller
eller
eller i vertex form
og vertex er
Dens graf vises som vist herunder sammen med fokus og directrix.
graf ((y ^ 2-82y-10x + 2736) ((108-x) ^ 2 + (41-y) ^ 2-0,6) (x-103) = 0 51,6, 210,4, -13,3, 66,1}
Hvad er standardformen for ligningens ligning med en directrix ved x = 5 og et fokus på (11, -7)?
(y + 7) ^ 2 = 12 * (x-8) Din ligning er af formen (yk) ^ 2 = 4 * p * (xh) Fokus er (h + p, k) Direktoren er (hp) Med fokus på (11, -7) -> h + p = 11 "og" k = -7 Direktoren x = 5 -> hp = 5 h + p = 11 "" (ækv. 1) "hp = 5 "" (ækv. 2) ul ("brug (ækv. 2) og løse h") "" h = 5 + p "(ækv. 3)" ul ("Anvend (ækv. 1) + ) for at finde værdien af "p) (5 + p) + p = 11 5 + 2p = 11 2p = 6 p = 3 ul (" Brug (eq.3) for at finde værdien af "h) h = 5 + ph = 5 + 3 h = 8 "Plugging af værdierne" h
Hvad er standardformen for ligningens ligning med en directrix ved x = -6 og et fokus på (12, -5)?
Y "2 + 10y-36x + 133 = 0" for et hvilket som helst punkt "(x, y)" på parabolen "" afstanden fra "(x, y)" til fokus og directrix "" er lig med "" "farve (blå)" afstand formel "sqrt ((x-12) ^ 2 + (y + 5) ^ 2) = | x + 6 | farve (blå) "kvadrering af begge sider" (x-12) ^ 2 + (y + 5) ^ 2 = (x + 6) ^ 2 rArcancel (x ^ 2) -24x + 144 + y ^ 2 + 10y + 25 = annullere (x ^ 2) + 12x + 36 rArry ^ 2 + 10y-36x + 133 = 0
Hvad er standardformen for ligningens ligning med en directrix ved x = -5 og et fokus på (-7, -5)?
Parabolas ligning er (y + 5) ^ 2 = -4x-24 = -4 (x + 6) Et hvilket som helst punkt (x, y) på parabolen er lige langt fra directrixen og fokuset. Derfor er x - (- 5) = sqrt (x - (- 7)) 2 2 (y - (- 5)) 2) x + 5 = sqrt ((x + 7) 5) ^ 2) Squaring og udvikling af (x + 7) ^ 2 termen og LHS (x + 5) ^ 2 = (x + 7) ^ 2 + (y + 5) ^ 2 ^ ^ + 10x + 25 = x ^ 2 + 14x + 49 + (y + 5) ^ 2 (y + 5) ^ 2 = -4x-24 = -4 (x + 6) Parabolas ligning er (y + 5) ^ 2 = -4x-24 = -4 (x + 6) graf {((y + 5) ^ 2 + 4x + 24) (x + 7) ^ 2 + (y + 5) ^ 2-0,03) (y-100 (x + 5)) = 0 [-17,68, 4,83, -9,325, 1,925]}