Hvad er det største rektangel, der kan skrives i en ligesidet trekant med sider på 12?

Hvad er det største rektangel, der kan skrives i en ligesidet trekant med sider på 12?
Anonim

Svar:

# (3, 0), (9, 0), (9, 3 sqrt 3), (3, 3 sqrt 3) #

Forklaring:

# Del VAB; P, Q i AB; R i VA; S i VB #

#A = (0, 0), B = (12,0), V = (6, 6 sqrt 3) #

#P = (p, 0), Q = (q, 0), 0 <p <q <12 #

#VA: y = x sqrt 3 Rightarrow R = (p, p sqrt 3), 0 <p <6 #

#VB: y = (12 - x) sqrt 3 Rightarrow S = (q, (12 - q) sqrt 3), 6 <q <12 #

#y_R = y_S Rightarrow p sqrt 3 = (12 - q) sqrt 3 Rightarrow q = 12 - p #

#z (p) = #Areal af #PQSR = (q - p) p sqrt 3 = 12p sqrt 3 - 2p ^ 2 sqrt 3 #

Dette er en parabola, og vi vil have Vertex # W #.

#z (p) = a p ^ 2 + bp + c Rightarrow W = ((-b) / (2a), z (-b / (2a)))

#x_W = (-12 sqrt 3) / (- 4 sqrt 3) = 3 #

#z (3) = 36 sqrt 3 - 18 sqrt 3 #