
Svar:
Den forbedrede kvadratiske formel (Google, Yahoo, Bing Search)
Forklaring:
De forbedrede kvadratiske formler;
D = d ^ 2 = b ^ 2 - 4ac (1)
I denne formel:
- Antal
- Antal
Fordele;
- Enklere og lettere at huske end den klassiske formel.
- Nemmere til beregning, selv med en lommeregner.
- Studerende forstår mere om de kvadratiske funktionsfunktioner, såsom: vertex, symmetriakse, x-aflytninger.
Klassisk formel:
Hvad er andre metoder til løsning af ligninger, der kan tilpasses til løsning af trigonometriske ligninger?

Løsning af koncept. For at løse en trig-ligning skal du omdanne den til en eller mange grundlæggende trigninger. Løsning af en trig-ligning resulterer til sidst i at løse forskellige grundlæggende trig-ligninger. Der er 4 grundlæggende grundlæggende trig ligninger: sin x = a; cos x = a; tan x = a; barneseng x = a. Exp. Løs synd 2x - 2sin x = 0 Løsning. Omdanne ligningen til 2 grundlæggende trigækninger: 2sin x.cos x - 2sin x = 0 2sin x (cos x - 1) = 0. Dernæst løses de 2 basiske ligninger: sin x = 0 og cos x = 1. Transformation behandle. Der er 2 hovedme
Hvad er den forbedrede kvadratiske formel til at løse kvadratiske ligninger?

Der er kun en kvadratisk formel, det vil sige x = (- b + -sqrt (b ^ 2-4ac)) / (2a). For en generel løsning af x i økse ^ 2 + bx + c = 0 kan vi udlede den kvadratiske formel x = (- b + -sqrt (b ^ 2-4ac)) / (2a). økse ^ 2 + bx + c = 0 ax ^ 2 + bx = -c 4a ^ 2x ^ 2 + 4abx = -4ac 4a ^ 2x ^ 2 + 4abx + b ^ 2 = b ^ 2-4ac Nu kan du faktorere. (2ax + b) ^ 2 = b ^ 2-4ac 2ax + b = + sqrt (b ^ 2-4ac) 2ax = -b + -sqrt (b ^ 2-4ac): .x = (- b + -sqrt b ^ 2-4ac)) / (2a)
Hvornår har du "ingen løsning", når du løser kvadratiske ligninger ved hjælp af den kvadratiske formel?

Når b ^ 2-4ac i den kvadratiske formel er negativ Bare i tilfælde af at b ^ 2-4ac er negativ, er der ingen løsning i reelle tal. På andre akademiske niveauer vil du studere komplekse tal for at løse disse sager. Men det er en anden historie