Løsning af koncept. For at løse en trig-ligning skal du omdanne den til en eller mange grundlæggende trigninger. Løsning af en trig-ligning resulterer til sidst i at løse forskellige grundlæggende trig-ligninger.
Der er 4 grundlæggende grundlæggende trig ligninger:
synd x = a; cos x = a; tan x = a; barneseng x = a.
Exp. Løs synd 2x - 2sin x = 0
Opløsning. Omdanne ligningen til 2 basiske trigninger:
2sin x.cos x - 2sin x = 0
2sin x (cos x - 1) = 0.
Derefter løses de 2 grundlæggende ligninger: sin x = 0 og cos x = 1.
Transformation proces.
Der er 2 hovedmetoder til at løse en trig-funktion F (x).
1. Transform F (x) til et produkt af mange grundlæggende trig-funktioner.
Exp. Løs F (x) = cos x + cos 2x + cos 3x = 0.
Opløsning. Brug trig identitet til transformation (cos x + cos 3x):
F (x) = 2cos 2x.cos x + cos 2x = cos 2x (2cos x + 1) = 0.
Herefter skal du løse de 2 grundlæggende trig-ligninger.
2. Transformér en trig-ligning F (x), der har mange trig-funktioner som variabel, i en ligning, der kun har en variabel. De almindelige variabler, der skal vælges, er: cos x, sin x, tan x og tan (x / 2)
Exp Løs
Opløsning. Ring cos x = t, vi får
Derefter løses denne ligning for t.
Bemærk. Der er komplicerede trigninger, der kræver særlige transformationer.
Antag at du arbejder i et laboratorium, og du har brug for en 15% syreopløsning for at gennemføre en bestemt test, men din leverandør sender kun 10% opløsning og 30% opløsning. Du har brug for 10 liter af 15% syreopløsningen?
Lad os arbejde dette ud ved at sige mængden af 10% opløsningen er x. Så vil 30% opløsningen være 10-x Den ønskede 15% -opløsning indeholder 0,15 * 10 = 1,5 af syre. 10% opløsningen vil give 0,10 * x Og 30% opløsningen vil give 0,30 * (10-x) Så: 0,10x + 0,30 (10-x) = 1,5-> 0,10x + 3-0,30x = 1,5-> 3 -0.20x = 1.5-> 1.5 = 0.20x-> x = 7.5 Du skal bruge 7,5 l af 10% opløsningen og 2,5 liter af 30%. Bemærk: Du kan gøre det på en anden måde. Mellem 10% og 30% er en forskel på 20. Du skal gå op fra 10% til 15%. Dette er en forskel p
Hvad er den rigtige løsning fra det givne spørgsmål? ps - Jeg har 98 som svar, men det er ikke korrekt (? idk måske er det givne svar på bagsiden forkert, du kan også se og tjekke min løsning, jeg har vedhæftet løsningen under spørgsmålet)
98 er det rigtige svar.Givet: 4x ^ 3-7x ^ 2 + 1 = 0 Opdeling med 4 finder vi: x ^ 3-7 / 4x ^ 2 + 0x + 1/4 = (x-a) (x-beta) (x-gamma) = x ^ 3- (alfa + beta + gamma) x ^ 2 + (alfabet + betagamma + gammaalpha) x-alphabetagamma Så: {(alfa + beta + gamma = 7/4), (alfabet + betagamma + gammaalpha = 0) , (alphabetagamma = -1/4):} Så: 49/16 = (7/4) ^ 2-2 (0) farve (hvid) (49/16) = (alfa + beta + gamma) ^ 2-2 (alfabet + betagamma + gammaalpha) farve (hvid) (49/16) = alfa ^ 2 + beta ^ 2 + gamma ^ 2 og: 7/8 = 0-2 (-1/4) (7/4) farve hvide) (7/8) = (alfabet + betagamma + gammaalpha) ^ 2-2 alfabetagam (alfa + beta + gamma) far
X - y = 3 -2x + 2y = -6 Hvad kan man sige om systemet af ligninger? Har den en løsning, uendeligt mange løsninger, ingen løsning eller 2 løsninger.
Uendeligt mange Vi har to ligninger: E1: x-y = 3 E2: -2x + 2y = -6 Her er vores valg: Hvis jeg kan gøre E1 til præcis E2, har vi to udtryk af samme linje, og så er der uendeligt mange løsninger. Hvis jeg kan gøre x- og y-termerne i E1 og E2 det samme, men ender med forskellige tal de er ens, er linjerne parallelle, og derfor er der ingen løsninger.Hvis jeg ikke kan gøre nogen af dem, så har jeg to forskellige linjer, der ikke er parallelle, og så vil der være et skæringspunkt et eller andet sted. Der er ingen måde at have to lige linjer har to løsninger (tag