Svar:
Ligningens ligning er # (x + 10) ^ 2 = -2y + 17 = -2 (y-17/2)
Forklaring:
Ethvert punkt
Derfor,
graf {((x + 10) ^ 2 + 2y-17) (y-9) = 0 -31.08, 20.25, -9.12, 16.54} #
Hvad er ligningen i standardform for parabolen med fokus på (10, -9) og en directrix af y = -14?
Y = x ^ 2 / 10-2x-3/2 fra det givne fokus (10, -9) og ligning for directrix y = -14, beregne pp = 1/2 (-9-14) = 5/2 beregne vinkelen (h, k) h = 10 og k = (- 9 + (- 14)) / 2 = -23 / 2 Vertex (h, k) = (10, -23/2) Brug vertexformen ) ^ 2 = + 4p (yk) positiv 4p fordi den åbner opad (x-10) ^ 2 = 4 * (5/2) (y - 23/2) (x-10) ^ 2 = 10 (y + 23/2) x ^ 2-20x + 100 = 10y + 115 x ^ 2-20x-15 = 10y y = x ^ 2 / 10-2x-3/2 grafen for y = x ^ 2 / 10-2x- 3/2 og directrix y = -14 grafen ((yx ^ 2/10 + 2x + 3/2) (y + 14) = 0 [-35,35, -25,10]}
Hvad er ligningen i standardform for parabolen med fokus på (-18,30) og en directrix på y = 22?
Parabolas ligning i standardform er (x + 18) ^ 2 = 16 (y-26) Fokus er ved (-18,30) og directrix er y = 22. Vertex er midtvejs mellem fokus og directrix. Derfor er vertex ved (-18, (30 + 22) / 2) dvs. ved (-18,26). Den vertikale form af ligningens ligning er y = a (x-h) ^ 2 + k; (h.k); være vertex. Her h = -18 og k = 26. Så ligningen af parabola er y = a (x + 18) ^ 2 +26. Afstanden til vertex fra directrix er d = 26-22 = 4, vi ved d = 1 / (4 | a |):. 4 = 1 / (4 | a |) eller | a | = 1 / (4 * 4) = 1/16. Her er directrixen under vertexet, så parabola åbner opad og a er positiv. :. a = 1/16. Ligningens lign
Hvad er ligningen i standardform for parabolen med fokus på (3,6) og en directrix på x = 7?
X-5 = -1 / 8 (y-6) ^ 2 Lad os først analysere, hvad vi skal finde, hvilken retning parabolen står overfor. Dette vil påvirke, hvad vores ligning vil være som. Direktoren er x = 7, hvilket betyder at linjen er lodret, og det vil også parabolen. Men hvilken retning vil den stå over for: venstre eller højre? Nå er fokuset til venstre for directrixen (3 <7). Fokuset er altid indeholdt i parabolen, så vores parabola vender mod venstre. Formlen for en parabola, der vender mod venstre er dette: (x-h) = - 1 / (4p) (y-k) ^ 2 (Husk at vertexet er (h, k)) Lad os nu arbejde på vores