Svar:
Forklaring:
Lade
Tager,
løsning til
Hvordan bevise (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?
Se nedenfor. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) synd (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Kan nogen hjælpe med at bekræfte denne trigidentitet? (SiNx + cosx) ^ 2 / sin ^ 2x-cos ^ 2x = sin ^ 2x-cos ^ 2x / (sinx-cosx) ^ 2
Det er verificeret nedenfor: (sinx + cosx) ^ 2 / (sin ^ 2x-cos ^ 2x) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => (annuller ((sinx + cosx) ) (sinx + cosx)) / (annuller (sinx + cosx)) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => ((sinx + cosx) sinx-cosx)) / (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => farve (grøn) ((sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2
Bevis det: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Bevis under anvendelse af konjugater og trigonometrisk version af Pythagorean Theorem. Del 1 sqrt (1-cosx) / (1 + cosx)) farve (hvid) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) farve (hvid) ("XXX") = sqrt (1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) farve (hvid) ("XXX") = (1-cosx) / sqrt 2x) Del 2 Tilsvarende sqrt ((1 + cosx) / (1-cosx) farve (hvid) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) Del 3: Kombination af udtrykkene sqrt (1-cosx) / (1 + cosx)) + sqrt (1 + cosx) / (1-cosx) farve (hvid) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) + (1 + cosx) / sqrt (1-cos ^ 2x