Svar:
Enhedsvektoren er
Forklaring:
Vi starter med at beregne vektoren
Vi laver et kryds produkt
At beregne enhedsvektoren
Lad os gøre nogle kontrol ved at lave prikken
Hvad er enhedsvektoren, der er ortogonal til planet, der indeholder (i + j - k) og (i - j + k)?
Vi ved, at hvis vec C = vec A × vec B så vec C er vinkelret på både vec A og vec B Så, hvad vi har brug for er bare at finde tværproduktet af de givne to vektorer. Så (hati + hatj-hatk) × (hati-hat + hat) = - hatk-hatj-hatk + hati-hatj-i = -2 (hatk + hatj) Så er enhedsvektoren (-2 (hatk + hatj)) / (sqrt (2 ^ 2 + 2 ^ 2)) = - (hatk + hatj) / sqrt (2)
Hvad er enhedsvektoren, der er ortogonal til planet, der indeholder <0, 4, 4> og <1, 1, 1>?
Svaret er = <0,1 / sqrt2, -1 / sqrt2> Vektoren, der er vinkelret på 2 andre vektorer, er givet af tværproduktet. <0,4,4> x <1,1,1> = | (hati, hat, hat), (0,4,4), (1,1,1) | = hati (0) -hatj (-4) + hat (-4) = <0,4, -4> Verifikation ved at gøre prikken produkter <0,4,4>. <0,4, -4> = 0 + 16-16 = 0 <1,1,1>. <0,4, -4> = 0 + 4-4 = 0 Modulet på <0,4, -4> er = <0,4, - 4> = sqrt (0 + 16 + 16) = sqrt32 = 4sqrt2 Enhedsvektoren opnås ved at dividere vektoren med modulet = 1 / (4sqrt2) <0,4, -4> = <0,1 / sqrt2, -1 / sqrt2>
Hvad er enhedsvektoren, der er ortogonal til planet, der indeholder (20j + 31k) og (32i-38j-12k)?
Enhedsvektoren er == 1 / 1507.8 <938.992, -640> Vektoren ortogonale til 2 vektorer i et plan beregnes med determinanten | (veci, vecj, veck), (d, e, f), (g, h, i) | hvor <d, e, f> og <g, h, i> er de 2 vektorer Her har vi veca = <0,20,31> og vecb = <32, -38, -12> Derfor | (veci, vecj, veck), (0,20,31), (32, -38, -12) | = Veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + Veck | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + vik (0 * -38-32 * 20) = <938.992, -640> = vecc Verifikation ved at gøre 2 dot produkter <938.992, -640>. <0,20,31>