
Ved at erstatte ovenstående ligning får vi,
Nu
Således reducerer ovennævnte til
Bevis det: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?

Bevis under anvendelse af konjugater og trigonometrisk version af Pythagorean Theorem. Del 1 sqrt (1-cosx) / (1 + cosx)) farve (hvid) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) farve (hvid) ("XXX") = sqrt (1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) farve (hvid) ("XXX") = (1-cosx) / sqrt 2x) Del 2 Tilsvarende sqrt ((1 + cosx) / (1-cosx) farve (hvid) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) Del 3: Kombination af udtrykkene sqrt (1-cosx) / (1 + cosx)) + sqrt (1 + cosx) / (1-cosx) farve (hvid) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) + (1 + cosx) / sqrt (1-cos ^ 2x
Bevis det: tan ^ 5x = ((1 / (1-sinx) ^ 2) - (1 / (1 + sinx) ^ 2)) / ((1 / (1-cosx) 2) - (l / 1 + cosx) ^ 2)?

For at bevise tg ^ 5x = ((1 / (1-sinx) ^ 2) - (1 / (1 + sinx) ^ 2)) / ((1 / (1-cosx) 2) - (1 / (1 + cosx) ^ 2) RHS = ((1 / (1-sinx) ^ 2) - (1 / (1 + sinx) 2)) / ((1 / (1-cosx) 2) - (1 / (1 + cosx) ^ 2) = ((1 + sinx) ^ 2- (1-sinx) 2) / (1-sin ^ 2x) ^ 2 / / ((1 + cosx ^ 2) - 1-cosx ^ 2) / (1-cos ^ 2x) ^ 2) = ((4sinx) / cos ^ 4x) / ((4cosx) / (sin ^ 4x)) = sin ^ 5x / cos ^ 5x = tan ^ 5x = LHS Proved
Vis at, (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos n * theta / 2)?

Se nedenfor. Lad 1 + costheta + isintheta = r (cosalpha + isinalpha), her r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2 ) -2) = 2cos (theta / 2) og tanalpha = sintheta / (1 + costheta) == (2sin (theta / 2) cos (theta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) eller alfa = theta / 2 derefter 1 + costheta-isintheta = r (cos (-alpha) + isin (-alpha)) = r (cosalpha-isinalpha) og vi kan skrive (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n ved anvendelse af DE MOivre's sætning som rnn (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosna