Svar:
Forklaring:
Begynd ved at finde hældningen ved hjælp af ligningen:
Hvis vi lader
Nu hvor vi har hældningen, kan vi finde ligningens ligning ved hjælp af punkt-hældningsformlen ved hjælp af ligningen:
hvor
Ved brug af
Vi kan omskrive ligningen ovenfor i
En linje går gennem (8, 1) og (6, 4). En anden linje går gennem (3, 5). Hvad er et andet punkt, at den anden linje kan passere, hvis den er parallel med den første linje?
(1,7) Så vi må først finde retningsvektoren mellem (8,1) og (6,4) (6,4) - (8,1) = (- 2,3) Vi ved, at en vektorligning består af en positionsvektor og en retningsvektor. Vi ved, at (3,5) er en position på vektor ligningen, så vi kan bruge det som vores positionsvektor, og vi ved, at det er parallel den anden linje, så vi kan bruge den retningsvektor (x, y) = (3, 4) + s (-2,3) For at finde et andet punkt på linjen skal du bare erstatte et tal i s bortset fra 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Så (1,7) er endnu et andet punkt.
En linje passerer gennem (4, 3) og (2, 5). En anden linje går gennem (5, 6). Hvad er et andet punkt, at den anden linje kan passere, hvis den er parallel med den første linje?
(3,8) Så vi må først finde retningsvektoren mellem (2,5) og (4,3) (2,5) - (4,3) = (- 2,2) Vi ved, at en vektorligning består af en positionsvektor og en retningsvektor. Vi ved, at (5,6) er en position på vektor ligningen, så vi kan bruge det som vores positionsvektor, og vi ved, at det er parallel den anden linje, så vi kan bruge den retningsvektor (x, y) = (5, 6) + s (-2,2) For at finde et andet punkt på linjen skal du bare erstatte et tal i s fra 0, så vi kan vælge 1 (x, y) = (5,6) +1 (-2,2) = (3,8) Så (3,8) er et andet andet punkt.
En linje passerer gennem (6, 2) og (1, 3). En anden linje går gennem (7, 4). Hvad er et andet punkt, at den anden linje kan passere, hvis den er parallel med den første linje?
Den anden linje kunne passere gennem punktet (2,5). Jeg finder den nemmeste måde at løse problemer ved at bruge punkter på en graf er at, godt, graf det ud.Som du kan se ovenfor har jeg gravet de tre punkter - (6,2), (1,3), (7,4) - og mærket dem henholdsvis "A", "B" og "C". Jeg har også tegnet en linje gennem "A" og "B". Det næste trin er at tegne en vinkelret linje, der løber gennem "C". Her har jeg lavet et andet punkt, "D", på (2,5). Du kan også flytte punkt "D" på tværs af linjen for at