Svar:
Der er to trin i at finde denne løsning: 1. Find tværproduktet af de to vektorer for at finde en vektor ortogonal til planet, der indeholder dem, og 2. normaliser den vektor, så den har enhedslængde.
Forklaring:
Det første skridt i løsningen af dette problem er at finde tværproduktet af de to vektorer. Korsproduktet ved definition finder en vektor ortogonal til planet, hvori de to vektorer multipliceres.
=
=
=
Dette er en vektor ortogonal til flyet, men det er endnu ikke en enhedsvektor. For at gøre det er vi nødt til at 'normalisere' vektoren: opdele hver af dens komponenter med dens længde. Længden af en vektor
I dette tilfælde:
Opdeling af hver komponent af
Hvad er enhedsvektoren, der er ortogonal til planet, der indeholder (i + j - k) og (i - j + k)?
Vi ved, at hvis vec C = vec A × vec B så vec C er vinkelret på både vec A og vec B Så, hvad vi har brug for er bare at finde tværproduktet af de givne to vektorer. Så (hati + hatj-hatk) × (hati-hat + hat) = - hatk-hatj-hatk + hati-hatj-i = -2 (hatk + hatj) Så er enhedsvektoren (-2 (hatk + hatj)) / (sqrt (2 ^ 2 + 2 ^ 2)) = - (hatk + hatj) / sqrt (2)
Hvad er enhedsvektoren, der er ortogonal til planet, der indeholder <0, 4, 4> og <1, 1, 1>?
Svaret er = <0,1 / sqrt2, -1 / sqrt2> Vektoren, der er vinkelret på 2 andre vektorer, er givet af tværproduktet. <0,4,4> x <1,1,1> = | (hati, hat, hat), (0,4,4), (1,1,1) | = hati (0) -hatj (-4) + hat (-4) = <0,4, -4> Verifikation ved at gøre prikken produkter <0,4,4>. <0,4, -4> = 0 + 16-16 = 0 <1,1,1>. <0,4, -4> = 0 + 4-4 = 0 Modulet på <0,4, -4> er = <0,4, - 4> = sqrt (0 + 16 + 16) = sqrt32 = 4sqrt2 Enhedsvektoren opnås ved at dividere vektoren med modulet = 1 / (4sqrt2) <0,4, -4> = <0,1 / sqrt2, -1 / sqrt2>
Hvad er enhedsvektoren, der er ortogonal til planet, der indeholder (20j + 31k) og (32i-38j-12k)?
Enhedsvektoren er == 1 / 1507.8 <938.992, -640> Vektoren ortogonale til 2 vektorer i et plan beregnes med determinanten | (veci, vecj, veck), (d, e, f), (g, h, i) | hvor <d, e, f> og <g, h, i> er de 2 vektorer Her har vi veca = <0,20,31> og vecb = <32, -38, -12> Derfor | (veci, vecj, veck), (0,20,31), (32, -38, -12) | = Veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + Veck | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + vik (0 * -38-32 * 20) = <938.992, -640> = vecc Verifikation ved at gøre 2 dot produkter <938.992, -640>. <0,20,31>