Hvis linjens hældning er udefineret, er linjen en lodret linje, så den kan ikke skrives i hældningsaflytningsform, men den kan skrives i form:
Eksempel
Hvis linjen har en udefineret hældning og passerer gennem punktet
Jeg håber, at dette var nyttigt.
Hældningen af en vandret linje er nul, men hvorfor er hældningen af en lodret linje udefineret (ikke nul)?
Det er ligesom forskellen mellem 0/1 og 1/0. 0/1 = 0, men 1/0 er udefineret. Hældningen m af en linje, der går gennem to punkter (x_1, y_1) og (x_2, y_2) er givet ved formlen: m = (Delta y) / (Delta x) = (y_2 - y_1) / (x_2 - x_1) Hvis y_1 = y_2 og x_1! = X_2 så er linjen vandret: Delta y = 0, Delta x! = 0 og m = 0 / (x_2 - x_1) = 0 Hvis x_1 = x_2 og y_1! = Y_2 så er linjen lodret: Delta y! = 0, Delta x = 0 og m = (y_2 - y_1) / 0 er udefineret.
Hvad er hældningen af en linje, der er vinkelret på en udefineret hældning?
Dens hældning vil være nul, og den vil være af formen x = a Hældning er udefineret for en linje, der er vinkelret på x-akse, dvs. parallelt med y-akse. Derfor vil en linje vinkelret på denne linje være parallel med x-aksen, og dens hældning vil være nul, og den vil være af formen x = a.
Når en 40-N kraft parallelt med hældningen og rettet op til hældningen påføres en kasse på en friktionsfri hældning, der er 30 ° over vandret, er accelerationen af kassen 2,0 m / s ^ 2 op ad hældningen . Kasseens masse er?
M ~ = 5,8 kg Netto kraften op hældningen er givet af F_ "net" = m * a F_ "net" er summen af 40 N kraften op i hældningen og komponent af objektets vægt, m * g, ned hældningen. F_ "net" = 40 N - m * g * sin30 = m * 2 m / s ^ 2 Løsning for m, m * 2 m / s ^ 2 + m * 9,8 m / s ^ 2 * sin30 = 40 N m * (2 m / s ^ 2 + 9,8 m / s ^ 2 * sin30) = 40 Nm * (6,9 m / s ^ 2) = 40 Nm = (40 N) / (6,9 m / s ^ 2) Newton svarer til kg * m / s ^ 2. (Se F = ma for at bekræfte dette.) M = (40 kg * annuller (m / s ^ 2)) / (4,49 afbrydelse (m / s ^ 2)) = 5,8 kg Jeg håber det hjælp